
BERICHTE
AUS DEM DEPARTMENT FÜR INFORMATIK

der Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften

Herausgeber: Die Professorinnen und Professoren

 des Departments für Informatik

Combination

of

Processes, Data, and Time

Jochen Hoenicke

Dissertation

Nummer 9/06 – Juli 2006

ISSN 0946-2910

Gutachter: Prof. Dr. E.-R. Olderog (Univ. Oldenburg)

Prof. Dr. A. P. Ravn (Univ. Aalborg)

eingereicht: 5. Mai 2006

Tag der Disputation: 12. Juli 2006

 © 2006 by the author

Author’s address:
Jochen Hoenicke
Fakultät II, Department für Informatik
Abteilung „Entwicklung korrekter Systeme“
26111 Oldenburg
Germany

E-mail: hoenicke@gmail.com

Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Combination
of

Processes, Data, and Time

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften

vorgelegt von

Dipl.-Inform. Jochen Hoenicke

Oldenburg, July 12, 2006

iv

v

Abstract

Nowadays, complex computing systems control safety critical systems like
nuclear power plants, aeroplanes, and modern cars. Errors in safety critical
systems can have catastrophic consequences. The best way to ensure that
a system is error free is by using formal methods. However, no existing
formal method covers all aspects of these systems.

In this work, we present a combination of the formal methods CSP,
Object-Z and Duration Calculus. Each method can describe certain as-
pects of a system: CSP can describe behavioural aspects, such as sequen-
tial and concurrent behaviour and synchronous communication, Object-Z
complex data operations, and Duration Calculus real-time requirements.
It is challenging to combine these to a unified language, CSP-OZ-DC, that
takes advantage of the individual strengths of the underlying formalisms.

The semantics of CSP-OZ-DC needs to cover the basic entities of the con-
stituent languages: events for CSP, operations and data spaces for Object-
Z, and time dependent observables for Duration Calculus. We describe a
particular behaviour of the system as a trajectory mapping each point in
time to a valuation that provides values for all state variables. Instanta-
neous events are represented by rising and falling edges of Boolean state
variables. The trace semantics of the full system is given as the set of all
behaviours that are allowed by the CSP, the Object-Z, and the Duration
Calculus part.

To facilitate the use of model checkers, we also provide an operational
semantics. To this end, we introduce phase event automata, a new class
of timed automata. The components of a combined specification can be
translated individually into phase event automata that run in parallel to
build the full system. The full system permits those behaviours that are
permitted by each component automaton. We prove the soundness of the
translation by showing that a behaviour is in the trace semantics of the
CSP, the Object-Z, or the DC part if and only if it is accepted by the
corresponding automaton.

We present two different model checking approaches for phase event au-
tomata. For systems having a finite data space, an abstraction from phase
event automata into timed automata can be used. Timed automata can

vi

be checked with tools like Uppaal [BDL04], which can prove properties like
reachability. For systems with an infinite data space, we present a dif-
ferent approach. The phase event automata are translated into transition
constraint systems that represent the transition relation by a first-order for-
mula. A bounded model checker can be used to find counterexamples that
violate the formula. The absence of counterexamples in a system can be
proven by the abstraction refinement model checker ARMC [Ryb02]. There
is no guarantee that this model checker terminates, since the problem it
strives to solve is not decidable. However, we demonstrate the effectiveness
by a case study of a real-time system with unbounded integer variables in
its data space.

vii

Zusammenfassung

Heutzutage steuern komplexe Computersysteme sicherheitskritische An-
wendungen wie Kernkraftwerke, Flugzeuge und Autos. Fehler in sicher-
heitskritischen Systemen können katastrophale Auswirkungen haben. Die
beste Art diese Fehler zu vermeiden ist der Einsatz formaler Methoden.
Allerdings gibt es keine formale Methode die alle Aspekte eines komplexen
Systems gut beschreiben kann.

In dieser Arbeit präsentieren wir eine Kombination der formalen Me-
thoden CSP, Object-Z und Duration Calculus. Jede Methode kann gewis-
se Aspekte eines Systems beschreiben. CSP kann Verhaltensaspekte, wie
sequentielle und parallele Abläufe sowie Kommunikation, Object-Z kann
komplexe Operationen auf Daten und Duration Calculus kann Realzeitan-
forderungen beschreiben. Es ist eine Herausforderung diese Techniken in
einer einheitlichen Sprache, CSP-OZ-DC, zu vereinigen.

Die Semantik von CSP-OZ-DC muss die Primitiven der zugrunde liegen-
den Sprachen unterstützen: zeitlose Ereignisse für CSP, Operationen und
komplexe Datentypen für Object-Z und zeitabhängige Observablen für Du-
ration Calculus. Ein konkretes Verhalten wird daher durch eine Trajektorie
beschrieben, die jedem Zeitpunkt eine Belegung aller Zustandsvariablen
zuordnet. Ereignisse werden durch steigende und fallende Flanken einer
booleschen Variable dargestellt. Die Tracesemantik des Gesamtsystems ist
die Menge der Verhalten, die vom CSP-Teil, vom Object-Z-Teil und vom
Duration-Calculus-Teil erlaubt werden.

Um die Benutzung von Model-Checkern zu ermöglichen, wird auch ei-
ne operationelle Semantik angegeben. Dazu führen wir eine neue Klasse
von zeitbehafteten Automaten, Phasen-Event-Automaten, ein. Die Kom-
ponenten einer kombinierten CSP-OZ-DC-Spezifikation werden getrennt in
Automaten übersetzt. Diese Automaten laufen parallel ab, um das Verhal-
ten des Gesamtsystems abzubilden. Die Parallelkomposition erlaubt dabei
genau das Verhalten, das von allen Automaten erlaubt wird. Wir bewei-
sen die Korrektheit der Übersetzung, indem wir zeigen, dass ein Verhal-
ten genau dann in der Tracesemantik des CSP-, des Object-Z oder des
Duration-Calculus-Teils liegt, wenn der zugehörige Automat das Verhalten
akzeptiert.

viii

Wir stellen zwei verschiedene Ansätze für Model-Checking auf Phasen-
Event-Automaten vor. Für Systeme mit endlichem Datenraum geben wir
eine Übersetzung von Phasen-Event-Automaten nach zeitbehafteten Auto-
maten an, die von Ereignissen und Datenvariablen abstrahiert. Diese Au-
tomaten können mit Werkzeugen, wie zum Beispiel Uppaal [BDL04], auf
bestimmte Eigenschaften, wie die Erreichbarkeit von Zuständen, überprüft
werden. Für Systeme mit unendlichem Datenraum stellen wir einen weite-
ren Ansatz vor. Die Phasen-Event-Automaten werden in Transition-Con-
straint-Systeme (TCS) übersetzt, die die erlaubten Übergänge durch ei-
ne Formel in Prädikatenlogik erster Stufe angeben. Solche System lassen
sich dann mit einem Bounded-Model-Checker verifizieren. Wenn ein Sy-
stem nicht korrekt ist, kann der Bounded-Model-Checker ein Gegenbeispiel
finden. Um allerdings die Abwesenheit von beliebig langen Gegenbeispie-
len zu beweisen, benötigt man einen anderen Ansatz, zum Beispiel den
Abstraction-Refinement Model-Checker ARMC [Ryb02]. Weil das Erreich-
barkeitsproblem für TCS nicht entscheidbar ist, gibt es keine Garantie, dass
ARMC terminiert. Allerdings zeigen wir die Wirksamkeit dieses Ansatzes
anhand einer Fallstudie eines Realzeitsystems, das ganzzahlige Variablen
benutzt, deren Werte nicht beschränkt sind.

ix

Acknowledgements

I enjoyed working in the Group “Correct System Design” (formerly “Se-
mantics”) of Ernst-Rüdiger Olderog. Therefore, I would like to thank the
current and former members for contributing to the positive atmosphere:
Andrea Göken, Clemens Fischer, Josef Tapken, Heike Wehrheim, Henning
Dierks, Michael Möller, Holger Rasch, Andreas Schäfer, Ingo Brückner,
Johannes Faber, André Platzer, Roland Meyer, and Margarete Muhle.
Especially I thank Clemens for establishing the basis CSP-OZ, Andreas
for interesting discussions, for example about axiomatisability of Duration
Calculus, and Michael, who was always helpful in creating nice looking
graphics and layouts. Andreas Schäfer, Michael Möller and Roland Meyer
were so kind to give feedback for earlier versions of this thesis.

The AVACS subproject “R1” gave a lot of new ideas that have partly
found their way into this thesis. The members are Andreas Podelski,
Ernst-Rüdiger Olderog, Patrick Maier, Andrey Rybalchenko, Bernd Fink-
beiner, Heike Wehrheim, Ingo Brückner, Uwe Waldmann, and Viorica
Sofronie-Stokkermans. I have to thank Patrick Maier for introducing me to
abstraction-refinement model-checking and Andrey Rybalchenko for writ-
ing the tool ARMC.

I thank Anders Ravn for reviewing this thesis. Also his research on the
Duration Calculus forms an important basis. His implementables were the
starting point for the counterexample traces.

Last but not least, I thank my parents for their continuous support.

x

xi

Contents

1. Introduction 1

2. CSP, Object-Z and Duration Calculus 5
2.1. CSP . 5

2.1.1. Syntax . 6
2.1.2. Operational Semantics 6

2.2. Z . 7
2.2.1. Syntax . 9
2.2.2. Type Checking . 11
2.2.3. Semantics . 12
2.2.4. Boolean Type . 13
2.2.5. Object-Z . 14
2.2.6. Reference and Value Semantics 15

2.3. Duration Calculus . 16
2.3.1. Syntax of Duration Calculus 17
2.3.2. Semantics of Duration Calculus 18
2.3.3. Abbreviations . 19
2.3.4. Embedding Z into Duration Calculus 20
2.3.5. Embedding Events Into State Variables 20
2.3.6. Counterexample Traces 21
2.3.7. Satisfiability of DC is Semi-Decidable 24

3. CSP-OZ-DC 29
3.1. CSPz . 29

3.1.1. Syntax . 30
3.1.2. Semantics . 37

3.2. CSP-OZ-DC Classes . 48
3.2.1. Syntax . 48
3.2.2. Case Study . 51
3.2.3. Semantics . 54

3.3. Parallel Composition of Systems 59
3.4. Discussion and Related Work 61

xii Contents

3.4.1. CSPz . 61
3.4.2. Semantics of CSP-OZ-DC 64
3.4.3. Parallel Composition 65
3.4.4. Related Work . 65

4. Phase Event Automata 67
4.1. Prerequisites . 69
4.2. Syntax of Phase Event Automata 72
4.3. Operational Semantics . 75
4.4. Automata and Formulae . 81
4.5. Deterministic Automata . 83
4.6. Case Study: Audio Control Protocol 86
4.7. Discussion and Related Work 90

4.7.1. Discussion . 90
4.7.2. Other Timed Automata Models 92

5. From CSP-OZ-DC to Phase-Event-Automata 95
5.1. Translating CSP . 95
5.2. Translating Object-Z . 98
5.3. Translating DC . 101

5.3.1. Power Set Construction for Counterexamples 103
5.3.2. Creating the Accepting Automaton 135
5.3.3. Case Study: Elevator 138

5.4. Discussion and Related Work 139

6. Model Checking 143
6.1. Implementation of Phase Event Automata 144

6.1.1. Representation of Formulae 144
6.1.2. Computing the Power Set Automaton 146

6.2. Reachability and Phase Event Automata 149
6.3. Translation to Uppaal Automata 151

6.3.1. Case Study: Audio Protocol 154
6.4. A Constraint-based Semantics for PEA 159

6.4.1. Transition Constraint Systems 160
6.4.2. Translation of PEA to TCS 161
6.4.3. Bounded Model Checking 165
6.4.4. ARMC . 166
6.4.5. Case Study: Elevator 167

6.5. Related Work . 171

Contents xiii

6.5.1. Audio Protocol . 171
6.5.2. Model Checking Duration Calculus 172

7. Conclusion 175
7.1. Summary . 175
7.2. Future Work . 176

A. Syntax of CSP-OZ-DC 179
A.1. New constructs in CSPz . 179
A.2. New constructs in CSP-OZ-DC 180
A.3. DC formulae . 181

Bibliography 183

Index 193

Curriculum Vitae 197

Technical Reports 199

xiv

xv

List of Figures

3.1. Type-checking rule for a CSPz process declaration 40
3.2. Elevator specification . 55

4.1. Phase event automaton for a watchdog 70
4.2. Manchester coding of ‘101100100’ 87
4.3. The sender and receiver automata 89
4.4. Gaps between two rising edges in Manchester encoding . . . 90
4.5. Comparison of timed automata models 94

5.1. Translation of CSP part of elevator 99
5.2. Translation of Object-Z part of elevator 102
5.3. Automaton for true a dAe ∧ ` ≥ 4 a dBe ∧ ` < 6 109
5.4. Automaton for dAe a dBe 111
5.5. Automaton for dAe ∧ ` > 1 a dBe 112
5.6. Automaton for dtruee a dBe ∧ ` ≥ 2 a d¬ Be 113
5.7. Automaton for dAe a ` < 2 113
5.8. Automaton for dAe ∧ ` < 1 a ` ≤ 2 114
5.9. Definition of guard . 116

6.1. Decision Diagram representation 145
6.2. Java code to manage Constraint Decision Diagrams 146
6.3. Pseudo code to compute successors and guard 148
6.4. Pseudo code to build power set automaton 150
6.5. Product automaton for the Audio Protocol 154
6.6. Product automaton without unreachable edges and locations 155
6.7. Algorithm to semi-decide reachability for a TCS 166

xvi

1

1. Introduction

In recent years, computing systems have become ubiquitous. So-called
embedded systems control technical equipment. They are widely used in
consumer applications like digital cameras, mobile phones, and handhelds.
They also control safety critical systems like nuclear power plants, aero-
planes, and modern cars. Errors in safety critical systems can have catas-
trophic consequences. The best way to ensure that a system is error free is
by applying formal methods. These methods enable the manufacturer to
actually prove that the system contains no software errors.

However, no existing formal method covers all aspects of these systems.
There are techniques to describe the behavioural aspects like CSP [Hoa85]
and CCS [Mil89] that provide methods to analyse the behaviour of commu-
nicating concurrent processes. With state-based techniques like Z [ISO02]
and B [Abr96], it is possible to model large state spaces and complex op-
erations. For real-time systems that have to react within certain time
bounds, timed automata [AD94] and logics like TCTL [ACD93], Timed
LTL [AH89], and Duration Calculus [ZH04] provide techniques to model
these systems and specify their properties.

Using these techniques in isolation can lead to inconsistent specifications.
If parts of the system are described by a behavioural language and other
parts by a state-based language, a clean semantics is needed that describe
how these parts interact with each other. Therefore, the combination of
behavioural and state-based techniques has been researched. The results
are languages like CSP-OZ [Fis00], TCOZ [MD98], and RT-Z [Süh99], that
have their own syntax and semantics. Ideally, the definition of the seman-
tics reuses the semantics of the individual languages, and describes only
the way they are combined.

To extend state-based and behavioural techniques with real-time aspects,
different approaches exist. One approach is unifying a state based language
and Timed CSP [DS95], an extension of CSP with a time-out operator.
In this thesis we take a different approach. We combine CSP-OZ, which
integrates CSP and Object-Z, with Duration Calculus [ZH04], a technique
to specify real-time systems.

Communicating Sequential Processes (CSP) is a specification language

2 1. Introduction

for communicating sequential processes. It was introduced by Hoare
[Hoa78, Hoa85]. The central concepts of CSP are synchronous commu-
nications over channels between different components and parallel com-
positions. Different operational and denotational semantics are defined,
and their consistency is backed up by a mathematical theory in [Ros97].
The model checker FDR [Ros94] enables automatic verification for CSP
specification.

The language Z [Spi88] is a mathematical notation developed by Abrial
and others at the Programming Research Group of the Oxford Univer-
sity Computing Laboratory (OUCL) since the late 1970s. It defines no-
tations for logical operations, quantifiers, sets, and functions. Further-
more, a schema calculus is defined, which provides a structured way to
represent large state space and operations. An object-oriented extension
is Object-Z by Smith [Smi00]. Tool support for Z and Object-Z exists in
form of type checkers [Joh96] and theorem provers like Z/EVES [Saa97] and
Isabelle/HOL-Z [Kol97, SKS02]. The Community Z Tools (CZT) provide
a library for parsing and type checking Z specifications.

Duration Calculus (abbreviated to DC) is a real-time interval logic with
an extensive proof system (calculus). It was initially developed in the
context of the ProCoS (Provably Correct Systems) project to describe the
behaviour of real-time systems. To represent state variables that change
over time, the notion of observables is used. Their semantics is given
by functions Time → D providing a value from the data domain D for
each point in time. The time domain can be discrete (Time = N) or
dense (Time = R). Verification support for discrete time is given through
the validity checker DCVALID [Pan01]. For dense time, embeddings of
Duration Calculus into the theorem provers PVS and Isabelle are provided
by Skakkebæk [Ska94] and Heilmann [Hei99].

The combination CSP-OZ-DC should allow reusing existing tools and
verification methods for each of the individual languages. For example,
refinement proofs for one part should be transferable to the full CSP-OZ-
DC specification. Therefore, the combined language must allow modular
reasoning. We define the semantics of the combined language based on the
semantics of the constituent languages. Modular reasoning is also useful
to verify complex specification consisting of many CSP-OZ-DC classes.

In this thesis, we give two semantics for the combined specification lan-
guage CSP-OZ-DC. In chapter 3 we define a trace semantics. Each of the
individual languages CSP, Object-Z, and DC already has a trace seman-

3

tics, but the traces come from different domains. Therefore, they have
to be transformed to a common shape. The traces permitted by a com-
bined CSP-OZ-DC specification are those that are permitted by the CSP,
the Object-Z, and the Duration Calculus part. This definition of trace
semantics allows modular reasoning.

In chapter 5, we give an equivalent operational semantics for CSP-OZ-
DC. The semantics is based on a new automaton model, called phase event
automata. When these automata run in parallel, they synchronise on both
their state space and their events. To implement real-time properties, these
automata use the concept of clocks from Alur and Dill [AD94]. The opera-
tional semantics of a CSP-OZ-DC class is given by the parallel composition
of three automata, each implementing one of the parts of the class: the CSP
part, the Object-Z part and the DC part. We show the correctness of the
translation by comparing the runs of the automata with the trace semantics
of CSP-OZ-DC.

The main technical result is the translation of a subset of Duration Cal-
culus, called counterexample formulae, to phase event automata. In 5.3
we give an explicit construction of the automaton. We prove the correct-
ness of the translation by showing that each interpretation accepted by the
automaton satisfies the DC formulae and vice versa.

The operational semantics enables model checking techniques. Model
checking [CES86] is a verification method that has been successfully applied
on finite state systems to prove their correctness. It is fully automatic and
does not require ingenious proofs. The first model checkers used explicit
state techniques, enumerating all reachable states of the system. If a state
is found that violates a property, a counterexample is produced that shows
how to reach this state. When all reachable states have been visited without
finding a state that violates the property, the model checker assures that
the system is safe with respect to the property.

The state of the art in automatic verification is dramatically increased
by symbolic techniques. Instead of enumerating all reachable states by
giving exact values of the state variables, symbolic techniques [BCM+90,
McM93] use formulae, which represent sets of reachable states. In some
cases, these symbolic techniques may be employed even for infinite state
systems. A popular example is model checking of timed automata [YPD94]
where zones, which are infinite sets of clock valuations, are described by a
finite formula.

In CSP-OZ-DC the sources of infinity are threefold: CSP processes can
introduce infinitely many control locations, Object-Z can introduce an infi-

4 1. Introduction

nite data space by declaring variables in an infinite data domain, and Dura-
tion Calculus introduces real-valued time. We do not examine systems with
an infinite CSP part in this thesis, but for systems with infinite data space
and real-valued time, we present model checking techniques in chapter 6.
We consider two different approaches. For some systems, we can abstract
from the data space of a phase event automaton. This produces a timed au-
tomata, which can be checked using popular tools like Uppaal [BDL04] and
Kronos [Yov97]. These tools prove properties like reachability. For systems
with infinite data space, we present a different approach. The phase event
automaton is translated into transition constraint systems that represent
the transition relation by a first-order formula. A bounded model checker
finds counterexamples that violate the formula. Another model checker for
transition constraint systems is the abstraction refinement model checker
ARMC [Ryb02]. It creates a finite abstraction of the system, which is re-
fined based on spurious counterexamples. These are counterexamples in
the abstract system that are not present in the concrete systems. We show
that this model checker can be applied to phase event automata built from
a CSP-OZ-DC class.

This thesis is organised as follows. In chapter 2, we introduce the spec-
ification techniques CSP, Object-Z, and Duration Calculus. In chapter 3,
we present the combined specification technique CSP-OZ-DC, and give
the trace semantics for this language. Chapter 4 introduces phase event
automata, their parallel composition, and their semantics. In chapter 5,
we present the translation of CSP-OZ-DC classes to phase event automata.
The main result is the translation of a subclass of Duration Calculus, called
counterexample formulae, to phase event automata. In chapter 6, we sketch
the implementation of the translation, and present the two different model
checking approaches. In chapter 7 we summarise the results of this thesis
and discuss topics for future work. The appendix contains grammar rules
for CSP-OZ-DC extending the syntax rules for Z.

5

2. CSP, Object-Z and Duration Calculus

Contents
2.1. CSP . 5

2.1.1. Syntax . 6

2.1.2. Operational Semantics 6

2.2. Z . 7

2.2.1. Syntax . 9

2.2.2. Type Checking 11

2.2.3. Semantics . 12

2.2.4. Boolean Type 13

2.2.5. Object-Z . 14

2.2.6. Reference and Value Semantics 15

2.3. Duration Calculus 16

2.3.1. Syntax of Duration Calculus 17

2.3.2. Semantics of Duration Calculus 18

2.3.3. Abbreviations 19

2.3.4. Embedding Z into Duration Calculus 20

2.3.5. Embedding Events Into State Variables 20

2.3.6. Counterexample Traces 21

2.3.7. Satisfiability of DC is Semi-Decidable 24

This chapter introduces the formal techniques CSP, Object-Z, and Du-
ration Calculus.

2.1. CSP

CSP is a specification language for communicating sequential processes. It
was introduced by Hoare [Hoa78, Hoa85]. The language is used to describe
behaviour of sequential and parallel processes in terms of the events they
communicate. The events can be structured as (c, v) where c is a com-
munication channel and v the communicated value. The set of events a
process can communicate is also called its alphabet and denoted by A.

6 2. CSP, Object-Z and Duration Calculus

Events are instantaneous; the real-time a communication needs is ab-
stracted into a single moment. The communication between processes run-
ning in parallel is synchronous; both the sending and the receiving processes
take the associated transition at the same time.

2.1.1. Syntax

The following simple grammar outlines the basic syntax of CSP:

P ::= Stop | Skip | a → P | P1 u P2 | P1 2 P2 |

P1
o
9 P2 | P1 ‖

A

P2 | P \A | X

The process Stop represents a deadlock, i. e., a process that never par-
ticipates in any communication. The process Skip terminates immediately.
Termination is represented by communicating a reserved termination event
X. The process a → P communicates an event a and behaves like process
P afterwards. The construct P1 u P2 represents a process that behaves
either as P1 or as P2. The choice is done internally. In contrast there
is the external choice P1 2 P2 where the first visible event of a compo-
nent running in parallel determines which alternative, P1 or P2, has to
be taken. Sequential composition is represented as P1

o
9 P2. Whenever

the first process P1 communicates the termination event X, process P2 is
activated.

The constructs P1 ‖
A

P2 represents the parallel composition of the two

processes P1 and P2 with synchronisation alphabet A. The alphabet A is
the set of events that P1 and P2 have to take synchronously. Only if both
processes agree on those events, they can take a simultaneous transition.
Both processes can communicate events that are not in the alphabet A
without having the other process cooperating.

2.1.2. Operational Semantics

The semantics is given as structured operational semantics (SOS) in the
style of Plotkin [Plo81]. It is represented as a labelled transition system
L = (Q ,Σ, q0,−→). The sets of states Q are CSP processes, q0 is an
initial CSP process. The set Σ is the set of all events occuring in the
alphabet of q0 including the reserved events X and τ . The transition
relation −→⊆ (Q × Σ × Q) is inductively defined by rules. We write
P a−→ P ′ for (P , a,P ′) ∈−→. Examples of rules for → are

2.2. Z 7

(a → P) a−→ P

P a−→ P ′ Q a−→ Q ′

P ‖
A

Q a−→ P ′ ‖
A

Q ′
where a ∈ A .

The first rule allows the prefixing process a → P to communicate the
event a. It then continues executing process P . The second rule describes
synchronised parallel communication: If process P and process Q can both
evolve with an a-transition and a is in the synchronisation alphabet A then
P ‖

A

Q can evolve with an a-transition.

2.2. Z

The language Z is a mathematical notation developed by Abrial and others
at the Programming Research Group of the Oxford University Computing
Laboratory (OUCL) since the late 1970s. It defines rigid notations for
logical operations, quantifiers, sets, and functions. Furthermore, a schema
calculus is defined, which is useful to encapsulate related variables into a
schema, and to define operations over schemas that change the variables
inside. In [Spi88], a first step towards standardisation of Z was done in form
of a reference manual. In 2002 the Z language has become an ISO/IEC
standard [ISO02].

The mathematical toolkit provides a standard notation for the usual
set operators, e. g., ∪,∩,⊆,∈, ∅. The power set of a set X is denoted by
P X , the Cartesian product of X and Y as X × Y . Furthermore different
symbols for total function X → Y , injective functions X � Y , partial
functions X 7→ Y , relations X ↔ Y are provided. All functions in Z are
represented as sets of tuples, thus their type is P(X ×Y).

For relations F : X ↔ Y (note that a function is also a relation) and
A ⊆ X , B ⊆ Y , the Z language uses the notation A C F to denote the
restriction of F on the domain A. The restriction of F on the complement
of A is denoted by A−C F . Similar notations, F B B and F −B B , are used
for restrictions on the range B and its complement. These operators are
defined as follows.

AC F == F ∩ (A×Y)
A−C F == (X \A)C F
F B B == F ∩ (X × B)
F −B B == F B (Y \ B)

8 2. CSP, Object-Z and Duration Calculus

The schema calculus is used to group related variables together, just as
the record construct does in many programming languages. A schema
is written as [SchemaText] where SchemaText consists of a DeclPart and
an optional Predicate followed by a vertical bar. The DeclPart is used to
declare new variables. The Predicate acts as a global invariant restricting
the allowed values of the variables. An example of a schema is:

PolarCoord
φ, r : R

r ≥ 0
0 ≤ φ < 2π
r = 0 ⇒ φ = 0

This schema is equivalent to

PolarCoord == [φ, r : R | r ≥ 0 ∧ 0 ≤ φ < 2π ∧ (r = 0 ⇒ φ = 0)]

which defines PolarCoord as the set of all bindings (mappings from the
names φ and r to their respective types) that satisfy the condition given
after the | symbol. For example, one element of PolarCoord is the binding
〈| φ == 0, r == 0 |〉. The variables of the schema can be accessed by their
names. For a binding p : PolarCoord , the variables are accessed by the
notation p.r and p.φ.

The syntax of the schema calculus is integrated into the mathemati-
cal notation. For example, universal quantification in Z has the following
syntax:

∀SchemaText • Predicate [universal quantification]

Its semantics is true if and only if the Predicate is true for all variable
bindings defined by SchemaText . Wherever a DeclPart is expected, one
can also include a previously defined schemas, e. g., ∀PolarCoord | r = 0 •
φ = 0.

An operation on a schema type S is a schema that relates the pre and
post states of S . Conventionally, the post state of S is denoted S ′, which
is the schema S with all variables primed, e. g.,

PolarCoord ′ == [φ′, r ′ : R |
r ′ ≥ 0 ∧ 0 ≤ φ′ < 2π ∧ (r ′ = 0 ⇒ φ′ = 0)] .

2.2. Z 9

An operation can be written as a schema that includes the pre and post
states. An operation schema can have further input and output values
that are conventionally decorated by ? and ! respectively. The inclusion
of pre and post states can be abbreviated by ∆S , which is defined as
∆S == [S ; S ′]. The following paragraph defines the operation Scale on
PolarCoord . It takes an input parameter factor? and scales the coordinate
by multiplying the r parameter.

Scale
∆PolarCoord
factor? : R

r ′ = r ∗ factor?
φ′ = if factor? = 0 then 0 else φ

There is a large tool support base for Z, ranging from typesetting Z
specifications over type-checkers [Joh96] up to theorem provers, e. g., HOL-
Z [Kol97] and Z/EVES [Saa97].

2.2.1. Syntax

The basic entities in a Z specification are paragraphs. A paragraph in Z
declares new symbols and fixes their meaning. In [ISO02] the following
paragraphs among others are defined:

Paragraph ::=[NAME] – given types
| DeclPart
[

Predicate]

– axiomatic description

| NAME
DeclPart

[
Predicate]

– schema definition

| NAME == Expression – horizontal definition
| FreeType & . . . & FreeType – free types

A given type [NAME] paragraph declares a type NAME . Semantically,
a type is a non-empty set of objects. There is no restriction on the number
of objects in the set (can be finite or infinite), nor the representation of the

10 2. CSP, Object-Z and Duration Calculus

objects. An axiomatic description can be used to introduce new variables,
namely those declared by DeclPart . The variables are assigned a value
such that Predicate holds. This value is fixed through the remainder of the
specification.

As explained earlier the schema

NAME
DeclPart

Predicate

is just another syntax for NAME == [DeclPart | Predicate], which is
a horizontal definition. Furthermore, a horizontal definition NAME ==
Expression is equivalent to the axiomatic description

NAME : {Expression}

which introduces the new variable NAME . Its value must be the only value
in the singleton set, thus the value of Expression.

A FreeType paragraph declares one or more types in a BNF like syntax:

FreeType ::= NAME ‘::=’ Branch ‘|’ . . . ‘|’ Branch
Branch ::= NAME [〈〈Expression〉〉]

For example, a binary tree with numbers stored in its leaves can be
expressed as a free type as follows:

Tree ::= branch〈〈Tree × Tree〉〉 | leaf 〈〈Z〉〉

A free type declaration is equivalent to a given type paragraph, followed
by an axiomatic description that restricts the structure of the type. For
example, the free type Tree is equivalent to

[Tree]

branch : Tree × Tree � Tree
leaf : Z� Tree

ran branch ∩ ran leaf = ∅
∀T : P Tree | branch(| T × T |) ∪ leaf (| Z |) ⊆ T • T = Tree

2.2. Z 11

The first paragraph declares Tree as given type, the axiomatic description
declares the constructors of the free type: the functions branch and leaf .
These functions must be injective (denoted by �) and the range of these
functions must be disjoint. Furthermore Tree is the smallest set which is
closed under the application of branch and leaf .

2.2.2. Type Checking

In Z each variable and expression has a type that can be determined stat-
ically. In [ISO02] types are constructed by the following grammar:

Type ::= [NAME , . . . ,NAME]Type2 – generic type
| Type2

Type2 ::= GIVENNAME – given type
| GENTYPENAME – generic parameter type
| P Type2 – power set type
| Type2× · · · × Type2 – Cartesian product type
| [Signature] – schema type

Signature ::= [NAME : Type;
. . . ; NAME : Type] – type signature

The basic operations on types are as follows: P creates the power set
type, whose objects are all sets of elements with the basic type. The
operator × creates the Cartesian product type. The type GIVENNAME is
the type of the elements in the set declared by the given type paragraph
[NAME]. Besides declaring a new type the paragraph also creates a new
constant NAME that is the set of all objects of type GIVENNAME . Hence
the type of NAME is P GIVENNAME . In [ISO02] the set of all numbers is
declared as a given type [A], where A stands for “arithmos”. Hence, the
type of R is P GIVENA.

Schema types are used for bindings of a Z schema. For example the ele-
ments of PolarCoord are bindings with the type [φ : GIVENA; r : GIVENA].
The schema PolarCoord is a set of bindings therefore its type is P[φ :
GIVENA; r : GIVENA].

Generic types are used for generic set operators like ⊆,∪,∩,∈, etc. For
example, the operator ∈ is a relation between objects and the corresponding

12 2. CSP, Object-Z and Duration Calculus

sets, which can be expressed as [X] P(GENTYPEX ×P GENTYPEX). Here the
first part [X] denotes that ∈ has a generic type parameter X that need to
be instantiated by a concrete type when ∈ is used in another expression.
The types GENTYPEX are placeholders and replaced by the concrete type
when the type is instantiated. A relation such as ∈ is represented as set of
tuples. In this case ∈ is defined as relation between X and P X , the power
set of X .

The symbols `E , `P and `D are used to denote that an expression, a
predicate, or a paragraph is well-typed. For an expression Σ `E e o

oτ denotes
that e is well-typed and has type τ in the type environment Σ. The type
environment is a mapping from NAME to Type and assigns a type to the
variables that are declared outside the expression. The Z standard uses
rules as the following one to define the process of type checking:

Σ `E e o
o τ1

Σ `E P e o
o τ2

(
τ1 = P α
τ2 = P P α

)
This rule states that P e is well typed and its type is τ2 = P P α if e is well
typed and its type is τ1 = P α. The type variable α can be instantiated
with any type.

2.2.3. Semantics

The ISO/IEC standard for Z [ISO02] defines the semantics for Z in a meta
language based on Zermelo-Fraenkel set theory. The underlying set theory
is not typed. It uses the following sets to give semantics for Z:

• NAME denotes the set of all valid Z identifiers. Names can be strings
of letters, optionally decorated with subscripts, ?, ! or ′, or mathe-
matical symbols. For example, PolarCoord , factor?, and ⊆ are valid
names.

• U denotes the universe, a set of all possible semantic values. It is
closed under construction of power set and Cartesian product. This
set also provides semantic values for generic symbols that can be
applied on arbitrary types, e. g., ⊆.

• W denotes the world, the set of all values from universe that are not
values of generic symbols.

2.2. Z 13

• Model denotes the set of models, Model == NAME 7 7→ U. A model
is thus a finite function, that assigns to variables values from the
universe.

The Z standard uses the symbols [[·]]E , [[·]]T , [[·]]P , [[·]]D, to denote the se-
mantics of expressions, types, predicates, and paragraphs. The semantics
of an expression [[e]]EM denotes the semantic value of e in the model M .
This is a value from the set W. The semantics of the type τ in the model
M is denoted by [[τ]]T M . This is the carrier set, i. e., the set of all elements
from W that have type τ . The semantics of a predicate [[p]]P is the set of
all models in which the predicate is true. The semantics of a paragraph
[[D]]D is a relation from models to models. A tuple (M ,M ′) is in the rela-
tion if M ′ is an extension of the model M defining values for the variables
declared in D . There may be multiple consistent extensions of M or none.
Therefore [[D]]D is a relation, not a function.

2.2.4. Boolean Type

The Z standard [ISO02] has no notion of Boolean variables. However, it
is often useful to have a Boolean type in the specification. A declaration
B == {true, false} is not syntactically correct in Z because the elements
of a set must be expressions but true and false are predicates. Although
an expression cannot be a predicate, the Z standard explicitly allows the
reverse. A predicate can be a schema expression e. The truth value of
this expression is θe ∈ e. The operator θ creates a binding for the schema
denoted by e. The values for the variables declared in the schema e are
taken from the current context. Therefore, the expression θe ∈ e means
that the current values of the variables occurring in the schema e satisfies
the predicate part of this schema.

If we use the simplest schema, i. e., the empty schema e == [], then the
semantic value for the expression e is the set {〈||〉} containing the empty
binding. The predicate θe ∈ e is true because θe is the empty binding
〈||〉. Falsehood can be expressed by the schema [| false], which denotes the
empty set (with the same type as []). The Boolean type can be defined as
the set of all subsets of the empty schema []:

B == P[]

Note that B has only two elements namely [] and [| false]. The Boolean
type can be mostly used as expected, e. g.

14 2. CSP, Object-Z and Duration Calculus

odd : Z → B
b1, b2, b3 : B

∀ z : Z • odd(z) ⇔ z mod 2 6= 0
b2 ⇔ true
b1 ⇔ (b2 ∨ b3) ∧ ¬ (b2 ∧ b3)

Care has to be taken because an expression cannot be a predicate. The
equations x = (n > 3) and odd = λ z : Z • (z mod 2 6= 0) are not
syntactically correct. However, they can be written as x = [| n > 3] and
odd = λ z : Z • [| z mod 2 6= 0].

2.2.5. Object-Z

A Z specification can define several operations for a schema type. In the
plain Z syntax these operations are scattered all over the specification.
Modern programming languages often use the object-oriented paradigm
where operations are directly declared along with the data-type. For Z
an object-oriented extension is Object-Z [Smi00]. It was developed at the
Software Verification Research Center in the University of Queensland.

The following example shows the definition of PolarCoord as Object-Z
class.

PolarCoord

φ, r : R

r ≥ 0
0 ≤ φ < 2π
r = 0 ⇒ φ = 0

Scale
∆(r , φ)
factor? : R

r ′ = r ∗ factor?
φ′ = if factor? = 0 then 0 else φ

The state schema declaring the variables φ and r and the operation Scale
are combined in a larger class declaration. The class declaration gives the

2.2. Z 15

name of the class, here PolarCoord . The state schema does not have a
name in Object-Z. All named schemas in a class are operations, e. g., Scale
in the example above. Every operation schema implicitly includes the pre
and post states of state schema. The ∆ list is used to list all variables
that are changed by the operations; variables that are not listed are not
changed.

2.2.6. Reference and Value Semantics

In [DKRS91] and [Smi92] Object-Z classes are given value semantics. A
class was identified by its state schema. For example, the semantic value
of PolarCoord as defined above is the same as if it had been defined as a
schema PolarCoord == [φ, r : R | . . .]. Two classes a, b : PolarCoord are
equal if a.r = b.r and a.φ = b.φ. The expression a.r ′ is the same as a ′.r ;
the schema a.Scale is an abbreviation for the following schema:

a.Scale
a, a ′ : PolarCoord
factor? : R

a ′.r = a.r ∗ factor?
a ′.φ = if factor? = 0 then 0 else a.φ

Later, a reference semantics for Object-Z was proposed [Gri98, Smi00]
where an object is identified by its reference. Two objects with equal con-
tents are no longer equal. On the other hand, even if the contents of an
object changes due to an operation, the object reference does not change.
With the reference semantics, the expressions a.r ′ and a ′.r represent differ-
ent values: a.r ′ denotes the post state of r in the object that is referenced
by a in the pre state, while a ′.r denotes the pre state of r in the object
that is referenced by a ′, the post state value of a.

For example, consider a polygon class that stores its vertices as a se-
quence of polar coordinates.

Polygon

vertices : seqPolarCoord

. . .

16 2. CSP, Object-Z and Duration Calculus

Using the value semantics, an operation that scales the polygon can be
specified as follows:

Scale
∆(vertices)
factor? : R

∀ i : dom vertices • vertices(i).Scale

With the reference semantics there is a important difference. The sequence
vertices does not change anymore, as its contents, the object references,
are still the same. Only their contents change.

Scale
∆()
factor? : R

∀ i : dom vertices • vertices(i).Scale

With the reference semantics it is possible that two different objects A
and B share a reference to the same object C . If B changes object C , this
change also has effects on object A. This makes modular reasoning much
more difficult. A prerequisite for modular reasoning is that the operation
on object C by object B is globally visible.

We follow the approach of Fischer [Fis00] and use the reference semantics
only for CSP-OZ-DC classes. In these classes the operations are visible
by means of CSP events. Thus synchronisation issues caused by shared
parallel access to the same class can be resolved with CSP methods. If
Object-Z classes are used, the underlying semantics is the simple value
semantics. Thus Object-Z classes can be used to implement structured
data types, e. g., stacks, lists, records, etc.

2.3. Duration Calculus

Duration Calculus [ZH04] (abbreviated to DC) is a real-time interval logic
accompanied with a calculus. It was initially developed in the context of the
ProCoS project (ESPRIT BRA 3104 and 7071) to describe the behaviour
of real-time systems.

2.3. Duration Calculus 17

2.3.1. Syntax of Duration Calculus

We define the basic syntax and semantics in accordance to [HZ97, ZH04].
The syntax of Duration Calculus is constructed from the following set of
symbols:

SVar The set of Boolean-valued state variables P ,Q ,R, . . ., also called
observables. The values of these variables depend on the point in
time.

GVar The set of real-valued x , y , z , The meaning of these variables is
time-independent.

FSymb The set of global f n , gm , . . . with arities n,m ≥ 0. The function
f n takes n real values as arguments and returns a real value.

RSymb The set of global pn , qm , . . . with arities n,m ≥ 0. The relation
qn takes n real values as arguments and returns a boolean value.

The set of state expressions is defined by the following syntax

StateExpr ::= 0 | 1 | SVar | ¬ StateExpr | StateExpr ∨ StateExpr

The symbols 0 and 1 stand for false and true respectively. A state expres-
sion is a boolean connection of state variables and thus is time-dependent.
The set of Duration Calculus terms is defined by the following syntax:

TermDC ::= ∫ StateExpr | GVar | f (TermDC , . . . ,TermDC)

Here ∫ is the integration operator of Duration Calculus, which measures
the duration the state expression evaluates to true. The meaning of a term
is a real value computed using a given time interval. The set of Duration
Calculus formulae is defined by the following syntax:

FormulaDC ::=p(TermDC × · · · × TermDC)
| ¬ FormulaDC | FormulaDC ∨ FormulaDC

| FormulaDC
a FormulaDC

| ∃GVar • FormulaDC | ∃SVar • FormulaDC

We allow relations over terms, Boolean connectives (the operators ∧, ⇒,
and⇔ are defined as abbreviations as usual), and quantification over global

18 2. CSP, Object-Z and Duration Calculus

and state variables. Furthermore, formulae may be connected by the chop
operator, denoted by a. Like for terms, the meaning of a formula also
depends on a time interval. The chop operator is used to chop time intervals
into two parts where each part needs to fulfil a different formula. In [HZ97]
quantification over state variables is not allowed, however, it can be easily
added to the language.

2.3.2. Semantics of Duration Calculus

The semantics of a Duration Calculus formula depends on the meaning
of state variables, global variables, function symbols and relation symbols.
The meaning of function and relation symbols is fixed and defined by total
functions f̃ n : Rn → R and p̃n : Rn → B. For our purpose, it suffices to
use constants (functions with arity zero) k : R, the functions +,−, and the
relations <,≤,=,≥, > with their standard meaning.

The values for the state variables P ∈ SVar is given by an interpretation
I[[P]] : Time → {0, 1}, that assigns to each point in time a value 0 or 1
denoting whether P holds at that time. We use dense time: Time = R+.
For I[[P]], finite variability is required, i. e., on every finite interval [0, t] the
value of I[[P]] may change only a finite number of times. The values for
the global variables X ∈ GVar is given by a valuation V : GVar → R.

The interpretation I is canonically extended to state expressions. The
extension is defined inductively:

I[[0]](t) = 0 for all t ∈ Time ,

I[[1]](t) = 1 for all t ∈ Time ,

I[[¬ S]](t) = 1− I[[S]](t) for all t ∈ Time ,

I[[S1 ∨ S2]](t) = max (I[[S1]](t), I[[S2]](t)) for all t ∈ Time .

Let Val denote the set of all valuations GVar → R and Intv denote the
set of all intervals [b, e] with b, e ∈ Time, b ≤ e. The meaning of a term
depends on the interpretation I, the valuation of global variables V ∈ Val,
and a time interval [b, e] ∈ Intv. The semantics of a term is expressed by
I[[]] : TermDC → (Val× Intv) → R and is defined inductively by:

I[[∫ S]](V, [b, e]) =
∫ e

b

I[[S]](t)dt

I[[x]](V, [b, e]) = V(x)

I[[f n(t1, . . . , tn)]](V, [b, e]) = f̃ n(I[[t1]](V, [b, e]), . . . , I[[tn]](V, [b, e]))

2.3. Duration Calculus 19

The ∫ operator is defined by the Riemann integral of the interpretation
for the state expression over the given interval. The Riemann integral is
well-defined, because the finite variability of the state variables propagates
to state expressions. The remaining definition is straightforward.

The semantics of a formula also depends on the interpretation, the valu-
ation, and the interval. We write I,V, [b, e] |= F iff the formula F holds for
interpretation I, valuation V, and interval [b, e]. The inductive definition
is as follows.

I,V, [b, e] |= pn(t1, . . . , tn) iff p̃n(I[[t1]](V, [b, e]), . . . , I[[tn]](V, [b, e]))
I,V, [b, e] |= ¬ F iff not I,V, [b, e] |= F
I,V, [b, e] |= F1 ∨ F2 iff I,V, [b, e] |= F1 or I,V, [b, e] |= F2

I,V, [b, e] |= F1
a F2 iff there is m ∈ R with b ≤ m ≤ e satisfying

I,V, [b,m] |= F1 and I,V, [m, e] |= F2

I,V, [b, e] |= ∃ x • F iff there is vx ∈ R with
I,V ⊕ {x 7→ vx}, [b, e] |= F

I,V, [b, e] |= ∃P • F iff there is IP : Time → {0, 1} with
I ⊕ {P 7→ IP},V, [b, e] |= F

The formula F holds on an interval [b, e] for I (denoted by I, [b, e] |=
F) iff I,V, [b, e] |= F holds for all valuations V. An interpretation I
satisfies F (denoted by I |= F) iff for all intervals [0, t] starting at time
zero I,V, [0, t] |= F holds.

2.3.3. Abbreviations

The special symbol ` refers to the length of an interval and is defined
by ` == ∫ 1. The formula dSe == (∫ S = ` ∧ ` > 0) abbreviates that
state expression S holds almost everywhere in an interval. Here “almost
everywhere” means “for all but finitely points”. Furthermore, the length
of such an interval can be restricted, e. g., dSe≤r == dSe ∧ ` ≤ r and
dSer == dSe ∧ ` = r .

The abbreviation 3F == true a F a true states that there is a
subinterval satisfying F . The dual operator 2F == ¬ 3¬ F states that
all subintervals satisfy F .

20 2. CSP, Object-Z and Duration Calculus

2.3.4. Embedding Z into Duration Calculus

As seen in the previous section, one of the basic entities in plain Duration
Calculus are state variables, which are mappings from time to the values
{0, 1}. But in our combined specification we want to refer to the entities of
the Object-Z class in the Duration Calculus part. To achieve this we will
embed Z expressions and predicates into the Duration Calculus.

In an Object-Z class we have the state space, which consists of several
variables. As the values of these variables changes over time, we can regard
them as functions from time to their domain. Likewise we can regard
predicates over Object-Z as functions from time to the boolean values,
which matches the interpretation of state expressions in the plain Duration
Calculus. As predicates are already closed against logical operators we can
use this syntax:

StateExpr ::= PredicateZ

To give meaning to such state expressions an interpretation IZ : Time →
Model is needed, which assigns a complete Z -model to every single point in
time. We require finite variability, i. e., for every interpretation and every
finite interval [0, t] there is a partition 0 < t1 < · · · < tn = t , such that I
is constant on each subinterval]ti , ti+1[. We can define the semantics of a
state expression S for some point in time t by evaluating the Z predicate
S under the model IZ (t):

I[[S]](t) =

{
1 IZ (t) |= S
0 otherwise

2.3.5. Embedding Events Into State Variables

State variables in Duration Calculus can only be used for stable variables,
that keep their value for a nonempty interval. By contrast, an instant event
that we need for CSP only occurs at a single point in time. Although it
is impossible to observe variables at a single point it is possible to observe
the exact time a variable changes. For example, in the formula (dSe ∧ ` =
x) a d¬ Se the state variable S changes x time units after the beginning
of the interval. If an event is identified with the change of a state variable
it is possible to express the occurrence of this event.

2.3. Duration Calculus 21

The above formula involving two non-zero length intervals and a duration
x is not convenient. Therefore, we follow the approach suggested in [ZH04]
and introduce new formulae that hold for the point intervals where the
state variable changes. To simplify the definition we introduce a notation
from [ZH96]. The formulae ↖ S and ↗ S describe that a state expression
is satisfied before resp. after a given point in time:

I,V, [b, e] |=↖ S iff b = e ∧ ∃m : R | m < b • I,V, [m, b] |= dSe
I,V, [b, e] |=↗ S iff b = e ∧ ∃m : R | m > e • I,V, [e,m] |= dSe

So ↖ S holds on a point interval iff that interval can be extended to
the left such that S holds on this extension. Likewise ↗ S holds on point
intervals that can be extended to the right such that S holds on the ex-
tension. With this notation one can specify that the variable S changes as
follows:

lS == (↖ ¬ S ∧↗ S) ∨ (↖ S ∧↗ ¬ S)

To express that S does not change at some point we can use the negated
formula and require that the interval has zero duration.

6 lS == ¬ lS ∧ ` = 0

Now we can identify CSP events with a Boolean variables that changes
every time the event occurs. We introduce a state variable e for every CSP
event. The formulae l e denotes that an event occurs at a certain point in
time. To express that an event does not occur during an interval we can
use the formula

� e == ¬ (` > 0 a l e a ` > 0) .

This formula states that there is no change of e inside the interval. It
allows a change of e at the end points of the interval, though. It also holds
for all point intervals.

2.3.6. Counterexample Traces

The full language of Duration Calculus is too expressive to be implemented.
As an example consider the formula

2((l ev a ` = 1) ⇒ (true a 6 l ev)) (2.1)

22 2. CSP, Object-Z and Duration Calculus

This formula states that if an event ev occurs it does not occur again exactly
one second later. It may occur earlier or later though. Unfortunately, there
is no way to implement this behaviour. The reason is that there is no
restriction how often the event ev can occur within one second. One has to
set a new timer whenever this event occurs which requires an unbounded
number of timers. It also requires exact measurement of the duration as
it is allowed to occur after 0.9999 and after 1.0001 seconds. Therefore this
formula is not useful in practise.

As we cannot handle a formula like this we allow only formulae that
are of a certain shape that makes it possible to implement them. One
class of formulae that was designed to meet this requirement is the class of
implementables [Rav94, SO99]. Ravn introduces the followed-by operator
F −→ dPe, which states that every interval satisfying F is always followed
by an interval where P holds. It is defined as follows1:

F −→ dPe == ¬ 3(F a d¬ Pe) .

The operator can be further modified by time constraints to restrict the
length of the interval where F holds:

F t−→ dPe == ¬ 3(F ∧ ` = t a d¬ Pe) (leads-to)

F ≤t−→ dPe == ¬ 3(F ∧ ` ≤ t a d¬ Pe) (bounded followed-by)

This operator is useful to define patterns for progress, stability and syn-
chronisation. For example, the progress pattern, dP ∧ Qe t−→ d¬ Pe,
states that if P ∧ Q holds for t seconds, it must be followed by an interval
where ¬ P holds. Thus P ∧ Q cannot hold longer than t seconds. The
following class of DC implementables are taken from [SO99].

Definition 2.1. Let P , P1, and Q be state expressions. The following
formulae are implementables.

1. Initialisation: de ∨ (dPe a true) demands that the system starts in
a state satisfying P .

2. Sequencing : dPe −→ dP ∨ P1e demands demands that the system
can evolve from state P only to a state satisfying P1.

1In [Rav94] it is defined as 2(F ∧ ` = r a ` > 0 ⇒ ` = r a dPe a true). The
definitions are logically equivalent.

2.3. Duration Calculus 23

3. Progress: dPe t−→ d¬ Pe demands that state P must be left after at
most t seconds.

4. Stability : d¬ Pe a dP ∧ Qe ≤t−→ dP ∨ P1e demands that if state P is
entered while Q holds it is stable or only evolves to a state satisfying
P1 during the next t seconds. The annotation ≤ t can be dropped
to allow unbounded stability. If P1 is false state P is stable.

5. Synchronisation: dP ∧ Qe t−→ d¬ Pe demands that state P must be
left within t seconds if Q holds. Note that the progress pattern is a
special case of this pattern.

Except for the initialisation pattern, the implementables are built from
the followed-by and leads-to operators. Most implementables are therefore
abbreviations for formulae of the shape

¬ (phase1
a · · · a phasen) ,

where phasei is either true or dPe for some state expression P . Addi-
tionally, the duration of phasei may be restricted by ` ∼ t . We call a
formula of the above shape a counterexample formula as it forbids bad be-
haviour by giving a counterexample. A counterexample describes a single
behaviour that must not occur. Using this pattern limits the danger of
over-specification, because it forbids only a single undesired behaviour.

However, not all formulae of this shape are implementable. For example
formula (2.1) can be reformulated as

¬ (true a l ev a ` = 1 a l ev a true) . (2.2)

It turns out that the problem is the exact length ` = 1. If the length
restriction was ` < t or ` ≤ t the formula would only demand a stable
behaviour (event ev should not occur too often). If the restriction was
` ≥ t or ` > t it would demand that event ev has to occur often enough.
These two cases correspond to the stability and progress implementable.
Thus, we only allow length restriction ` ∼ t with ∼∈ {<,≤,≥, >}. The
syntax of counterexample formulae is defined as follow.

ce formula ::= ¬ (phase a (phase | events)
a · · · a (phase | events) a true)

phase ::= (true | dPredicatee)[∧ ` ∼ t]

24 2. CSP, Object-Z and Duration Calculus

[∧ �NAME . . . ∧ �NAME]
∼ ::= ≤ | < | > | ≥

events := lNAME | 6 lNAME
| events ∨ events | events ∧ events

Although the leads-to operator as defined above seems to require equal-
ity, it can be replaced by ≥ in most cases. It turns out that all imple-
mentables can be reformulated as counterexample traces:

Lemma 2.2 (Implementables as Counterexample Traces). The implementa-
bles can be reformulated as equivalent counterexample traces (c.f. [Tap01],
lemma 4.2).

1. de ∨ (dPe a true) ≡ ¬ (d¬ Pe a true)

2. dPe −→ dP ∨ P1e ≡ ¬ (true a dPe a d¬ P ∧ ¬ P1e a true)

3. dPe t−→ d¬ Pe ≡ ¬ (true a (dPe ∧ ` > t) a true)

4. d¬ Pe a dP ∧ Qe ≤t−→ dP ∨ P1e ≡
¬ (true a d¬ Pe a (dP ∧ Qe ∧ ` < t) a d¬ P ∧ ¬ P1e a true)

5. dP ∧ Qe t−→ d¬ Pe ≡ ¬ (true a (dP ∧ Qe ∧ ` ≥ t) a dPe a true)

Proof. Most formulae are expansions of the abbreviations for the operators
−→ and 3. The formula for stability uses the equivalence

true a (dQe a dPe) ∧ ` ≤ t ≡ true a dQe a (dPe ∧ ` < t) ,

the formula for synchronisation uses the equivalence

true a (dPe ∧ ` = t) ≡ true a (dPe ∧ ` ≥ t) .

2

2.3.7. Satisfiability of DC is Semi-Decidable

It is well-known that satisfiability for Duration Calculus is not decid-
able [ZH04]. The proof provides a reduction of the termination problem
for two-counter machines [SS63] to the satisfiability problem of Duration
Calculus. The two-counter machine terminates if and only if the translated

2.3. Duration Calculus 25

formula is satisfiable. Although the termination problem is semi-decidable,
this reduction does not yield semi-decidability of the satisfiability problem.
We will now show that under certain assumptions it is semi-decidable.

The first assumption is: It is semi-decidable, whether a conjunction P1 ∧
. . . ∧ Pn of state expressions Pi occuring in F is satisfiable. This is a
necessary assumption because otherwise satisfiability of the formula dP1e ∧
. . . ∧ dPne cannot be semi-decided. The second assumption is: The first
order logic part, i. e., the logic over the reals with the function symbols and
predicates that are used to build terms and formulae from smaller terms,
is semi-decidable. With the method of quantifier elimination [Col75] the
first oder logic (R,+, ·) is even decidable. This is the logic built from the
function symbols +, · and the predicates ≥,≤, >, <, =.

Let ΣF == P StateExprF be the power set of state expressions occuring
in a DC formula F . Since there are only finitely many state expressions
occuring in F , ΣF is also finite. For every interpretation I on every finite
interval [b, e] there are only finitely many changes of I. Let b = t0 < · · · <
tn = e the points of time where the interpretation changes. Then I can
be represented by the word w = w1 · · ·wn ∈ Σ∗F where wi = {P : ΣF |
I, [ti−1, ti] |= dPe}.

We call w the untimed part of I, denoted by Untime(I, [b, e]). Further-
more, for a fixed word w we can translate the question of satisfiability of a
formula F into a first-order formula over real numbers using the predicates
=,≤, the function +, and other predicates and functions that directly oc-
cur in F . This observation can be used to semi-decide satisfiability of a
DC formula F . A non-deterministic algorithm that accepts the satisfiable
formulae works as follows.

1. Guess a word w ∈ Σ∗F which is the untimed part of some satisfying
interpretation I.

2. Check for each wi that (
∧

P ∈ wi • P) ∧ (
∧

P ∈ ΣF \ wi • ¬ P) is
satisfiable. Abort if it is unsatisfiable.

3. Translate the DC formula F and the word w = w1 . . .wn to a first
order formula xlat(F ,w , t0, tn) (defined below) over real numbers.

4. Check that xlat(F ,w , t0, tn) is satisfiable. Abort if it is unsatisfiable.

5. Accept F .

26 2. CSP, Object-Z and Duration Calculus

By xlat(F ,w , t0, tn) we denote the translation of the DC formula F .
The variables occuring free in xlat(F ,w , t0, tn) are t0, t1, . . . , tn and the
free variables of F . The formula xlat(F ,w , t0, tn) is satisfiable, if and only
if there is an interpretation I with Untime(I, [t0, tn]) = w that satisfies
F on the interval [t0, tn]. The formula is translated into a formula over
real numbers referencing the variables t0, . . . , tn , the timed part of the
interpretation. We define xlat inductively over the syntax of formulae.

xlat(F1 ∧ F2,w , b, e) = xlat(F1,w , b, e) ∧ xlat(F2,w , b, e)
xlat(¬ F ,w , b, e) = ¬ xlat(F ,w , b, e)

xlat(F1
a F2,w , b, e) = ∃m.b ≤ m ∧ m ≤ e

∧ xlat(F1,w , b,m) ∧ xlat(F2,w ,m, e)
where m is a fresh variable

xlat(∃X .F ,w , b, e) = ∃X .xlat(F ,w , b, e)

Now consider the DC formula p(T1, . . . ,Tkp
) where p is a predicate of

arity kp and Ti are terms. The terms are translated by xlat(Ti ,w) to terms
over real numbers referencing the variables t1, . . . , tn . The basic idea is to
translate ∫ P to

∑
i : 1..n | P ∈ wi • ti − ti−1, the sum of the lengths

of the intervals where P holds. Because w and P are known when xlat is
invoked, the resulting term is a fixed sum of terms ti − ti−1. The following
diagram illustrates this translation.

w : {P ,Q} {Q} {P} {P ,Q}
t0 t1 t2 t3 t4

xlat(∫ P ,w) = (t1 − t0) + (t3 − t2) + (t4 − t3)

However, the translation needs to consider the current interval [b, e]. There-
fore, we introduce new variables t ′i , which are set depending on ti and the
interval [b, e] to

t ′i =

b ti < b,

ti b ≤ ti ≤ e,

e ti > e.

(2.3)

Hence, the values for t ′i are set to ti if ti is inside the considered interval
[b, e]. Otherwise it is set to b or e. The following diagram illustrates this.

2.3. Duration Calculus 27

w : {P ,Q} {Q} {P} {P ,Q}
t0 t1 t2 t3 t4

[b, e]
t ′0 = t ′1 t ′2 t ′3 t ′4

xlat(∫ P ,w) = (t ′1 − t ′0) + (t ′3 − t ′2) + (t ′4 − t ′3)

The variables t ′0, . . . , t
′
n are bound with an existential quantifier and their

value is is fixed according to (2.3).

xlat(p(T1, . . . ,Tkp),w , b, e) =
∃ t ′0 . . . t ′n • p(xlat(T1,w), . . . , xlat(Tkp ,w)) ∧
n∧

i=0

((ti < b ⇒ t ′i = b) ∧ (b ≤ ti ≤ e ⇒ t ′i = ti) ∧ (ti > e ⇒ t ′i = e))

Because n, the length of the word w is known, the operator
∧

can be
expanded when translating the formula. For example, for n = 1 it is
expanded to

∃t ′0, t ′1 • p(xlat(T1,w), . . . , xlat(Tkp ,w)) ∧
((t0 < b ⇒ t ′0 = b) ∧ (b ≤ t0 ≤ e ⇒ t ′0 = t0) ∧ (t0 > e ⇒ t ′0 = e)) ∧
((t1 < b ⇒ t ′1 = b) ∧ (b ≤ t1 ≤ e ⇒ t ′1 = t1) ∧ (t1 > e ⇒ t ′1 = e))

The inductive definition of xlat for terms is as follows.

xlat(∫ P ,w) =
∑

i : 1..n | P ∈ wi • t ′i − t ′i−1

xlat(X ,w) = X
xlat(f (T1, . . . ,Tkf

),w) = f (xlat(T1,w), . . . , xlat(Tkf
,w)))

Using the translation function xlat the algorithm given above semi-
decides the satisfiability problem for F .

Proof. Assume that F is satisfiable. Then there is an interpretation I,
a variable valuation V and an interval [b, e] with I,V, [b, e] |= F . The
algorithm can guess the untimed behaviour w = Untime(I, [b, e]). By
construction of wi , the formula (

∧
P ∈ wi • P) ∧ (

∧
P ∈ ΣF \wi • ¬ P) is

satisfiable. The formula xlat(F ,w , t0, tn) is satisfiable by construction: The
satisfying valuation assigns the values given by V to the variables occuring
free in F , b to t0, e to tn , and the points in time when I changes on the

28 2. CSP, Object-Z and Duration Calculus

interval [b, e] to the variables t1, . . . , tn−1. Hence, the algorithm accepts
F .

If the algorithm accepts F , there is a untimed word w and a valuation for
t0, . . . , tn and the variables occuring free in F such that xlat(F ,w , t0, tn)
evaluates to true. For each wi the formula (

∧
P ∈ wi • P) ∧ (

∧
P ∈

ΣF \ wi • ¬ P) is satisfiable. Hence, there is a satisfying valuation Mi for
the variables occuring in the state expressions P . Now, choose

I(t) =

M1 t < t1 ,

M2 t ∈ [t1, t2] ,
...
Mn−1 t ∈ [tn−2, tn−1] ,
Mn t > tn−1 .

Choose the valuation V of the free variables according to the satisfying
valuation of xlat(F ,w , t0, tn). Then I,V, [t0, tn] |= F . 2

29

3. CSP-OZ-DC

Contents
3.1. CSPz . 29

3.1.1. Syntax . 30

3.1.2. Semantics . 37

3.2. CSP-OZ-DC Classes 48

3.2.1. Syntax . 48

3.2.2. Case Study . 51

3.2.3. Semantics . 54

3.3. Parallel Composition of Systems 59

3.4. Discussion and Related Work 61

3.4.1. CSPz . 61

3.4.2. Semantics of CSP-OZ-DC 64

3.4.3. Parallel Composition 65

3.4.4. Related Work 65

In this chapter, we present the combined language CSP-OZ-DC. In the
first section, we present CSPz the CSP syntax we use. Then, we present
CSP-OZ-DC itself.

3.1. CSPz

The textbook language of CSP [Hoa85, Ros97] uses a minimal syntax and
semantics such as the one described in section 2.1. There is no formal
syntax for declaring data types and for common functions, e. g., arithmetic
operators over integers. Instead, a mathematical notation with intuitive
semantics is used.

When tool support for CSP arose, this gap had to be closed. The FDR
model checker [For05] for CSP comes with its own input language that
provides a complete syntax for expressions, types, and channels. It sup-
ports enumeration types, integers, tuples, sets, and functions. Scatter-
good [Sca94] defined a semantics for the input language and named it
CSPm for ‘machine readable CSP’.

30 3. CSP-OZ-DC

Although this syntax would be expressive enough for a combination of
CSP and Object-Z, it is inconvenient to have expressions in CSP processes
written in one syntax and expressions in Z parts in a different syntax.
Also, using two different type systems makes it more difficult to combine
the languages. Therefore, Fischer [Fis00] defined a new concrete syntax for
CSP, named CSPz, that provides the same constructs as CSPm but reuses Z
syntax where applicable. We follow his approach with small modifications.

3.1.1. Syntax

The language CSPz is a proper extension of the Z language. A Z specifica-
tion consists of several paragraphs. In CSPz two new types of paragraphs
exists: channel declarations and process declarations:

Paragraph ::= ParagraphZ | Channel | Process

Furthermore, the syntax for Z expressions is extended in CSPz by process
expressions.

Expression ::= ExpressionZ | ExpressionCSP

In the remainder of this section, we introduce the new constructs Channel ,
Process and ExpressionCSP .

Channel Declaration

A CSPz channel is declared with the keywords chan or local chan. Local
channels are only visible within a single CSP-OZ-DC class, while channels
declared with chan are visible globally. Multiple channel declarations are
separated by newline characters (NL). The syntax for a channel declaration
is

Interface ::= ChannelDecl NL . . .NL ChannelDecl
ChannelDecl ::= chan NAME , . . . ,NAME[: Expression]

| local chan NAME , . . . ,NAME[: Expression]

The latter declares one or more channels of the same type. The type is
given by Expression. This expression must be a schema type, i. e., a set of
bindings that can be communicated over this channels. A binding in Z is a
function mapping names to values. Thus every value that is communicated

3.1. CSPz 31

over a channel has a name that can be used to reference the value. If
Expression is omitted, it defaults to the empty schema []. These channels
are also called signals.

A channel corresponds to a set of events that can be communicated over
this channel. An event is identified by its channel name and a binding that
provides values for all parameters that appear in the channel declaration.
A channel can be represented as a function that maps a binding to an
event.

Example 3.1. The channel declaration

chan open, close
chan request : [x : Z]

declares three new channels open, close, and request . The channels open
and close are signals. The channel request has a single parameter x of type
Z. There are infinitely many events corresponding to the channel request ,
e. g., request〈| x == −1 |〉, request〈| x == 0 |〉, request〈| x == 1 |〉. For each
signal channel there is exactly one corresponding event denoted by open〈||〉,
close〈||〉.

Process Declaration

Traditionally, process declarations in CSP are recursive equations, each
binding a name to a process term. The names occurring on the left hand
side of the equation can appear again on the right hand side. An example
of a simple recursive process is:

P = a → Q
Q = b → P

In Z the operator == is used to define constants, e. g.,

N == {n : Z | n ≥ 0} .

However, this operator cannot be used for recursive equations. We there-
fore follow Fischer and use a new operator c= that allows defining a recur-
sive CSP process. It comes with its own type-checking rule and has its own
semantics tailored for recursive process equations.

32 3. CSP-OZ-DC

The BNF syntax of a process declaration is

ProcessDeclaration ::= ProcessEquation NL . . .NL ProcessEquation

ProcessEquation ::= NAME[(SchemaText)] c= Expression

A process declaration consists of one or more equations separated by new-
line characters. Each equation declares a new process NAME optionally
taking parameters described by SchemaText . It is defined by an expres-
sion, which must evaluate to some process term. The latter is ensured by
the type-checking rules of Z.

Process Expressions

The syntax of Z expressions is extended by process expressions. The de-
sign of the Z language makes it possible to define new operators without
changing the syntax of Z expressions. For example, the external choice
operator 2 can be declared as a Z operator:

function 30 leftassoc (2)

2 = Process × Process → Process

∀P ,Q : Process • P 2 Q = . . .

The first line defines 2 as left-associative infix function with the precedence
of 30 (the precedence of the + operator). The axiomatic paragraph declares
the operator as a function that takes two processes and returns a new
process. The definition of P 2 Q is omitted here. This paragraph could
be included in a CSP toolkit that takes a similar role as the mathematical
toolkit for Z. However, some syntactic constructs cannot be introduced
without changing the Z syntax.

Therefore, we follow [Fis00] and define process expressions as an exten-
sion to the core syntax of Z.

Basic Processes The simplest processes are Stop, Skip, Chaos(A), and
Diver .

Expression ::= Stop | Skip | Chaos(Expression) | Diver – basic processes

The process Stop represents a deadlock, the process that cannot evolve fur-
ther. The process Skip terminates immediately. For the process Chaos(A),

3.1. CSPz 33

the value represented by A must be a set of events. The process can either
refuse any communication or communicate any event from the set A. The
process Diver is the diverging process executing an infinite sequence of τ
events.

External and Internal Choice Beside the usual binary operators 2 and
u for external and internal choice, the syntax of CSPz also supports the
replicated choice operators. With the replicated operators, a choice over
an infinite number of processes is possible. The syntax for external and
internal choice is as follows:

Expression ::= Expression 2 Expression – external choice

| Expression u Expression – internal choice

| 2SchemaText • Expression – replicated external choice

| uSchemaText • Expression – replicated internal choice

The syntax for the replicated choice operators is similar to the Z syntax
of the λ-operator or set comprehension. The SchemaText declares new
variables, which can be referenced in the process expression.

Example 3.2. The following construct builds an external choice over all
processes P(x , y) where x and y are integer variables and x < y :

2 x , y : Z | x < y • P(x , y)

Prefixing and Multi-Prefixing In the standard literature for CSP [Hoa78,
Hoa85, Ros97] the basic syntax only defines one prefix operator a → P .
Here a is an event and P is a process. The resulting process a → P
communicates the event a and afterwards proceed as P . The formal syntax
is as follows.

Expression ::= Expression → Expression – event or schema prefixing

The first expression must be an event and the second expression a process
expression. Fischer also defines schema prefixing in case the first expression
is a schema. He uses it to give semantics for Z operations in CSPz. The
details of this operator can be found in [Fis00].

34 3. CSP-OZ-DC

However, to capture values that are communicated over a channel, there
is the need for another syntax allowing to receive the communicated values
into local variables. In [Ros97] this is defined as syntactic sugar. If c
is a channel that can communicate the values {1, 2, 3} then the process
c?a → P(a) is an abbreviation for c.1 → P(1) 2 c.2 → P(2) 2 c.3 → P(3)
(the dot is used in CSP to combine the channel name and the value to an
event). With the notation of replicated choice this can be expressed as
2 a : {1, 2, 3} • c.a → P(a).

Following this tradition, the languages CSPm and CSPz as defined in
[Fis00] uses a special syntax known as multi-prefixing. For a channel c
that communicates two integer values c : Z× Z, Fischer allows writing

c!5?y : 1..3 → P(y) .

This denotes the process that writes 5 to the channel c, simultaneously
receives a value from this channel in the range 1..3, and afterwards behaves
like P(y) where the received value is substituted for y . This process is
equivalent to

c.5.1 → P(1) 2 c.5.2 → P(2) 2 c.5.3 → P(3) ,

which can also be written as 2 y : 1..3 • c.5.y → P(y).
As mentioned earlier, our variant of CSPz does not allow channels to

have non-structured types. Instead the channel c would be declared in
CSPz as

chan c : [x : Z; y : Z]

and the names of the declared parameters x and y are part of the channel
type. A syntax is needed that allows binding the output value, 5 in the
example above, to the first channel parameter x . We use the following
syntax, which follows the style of the Z standard:

(c!x == 5?y : 1..3) → P(y)

This is an abbreviation for u x == 5 • 2 y : 1..3 • c(θ[x : Z; y : Z]) →
P(y). The θ operator creates the binding that maps the names x and y
to the values of the variables with the same names. This way it relates
the variables x and y that are bound by the operators u and 2 with
the names x , y declared in the channel type. In general the syntax for
multi-prefixing is as follows:

Expression ::= NAME[?SchemaText . . .!SchemaText] → Expression
– multi event prefixing

3.1. CSPz 35

The process NAME !SchemaText1?SchemaText2 · · · → PROCESS is an ab-
breviation for

uSchemaText1 • 2SchemaText2 • . . .

NAME (θ typeof (NAME)) → PROCESS

If a channel parameter does not occur in one of the SchemaText parts
of a multi-prefix, it is implicitly taken from the current scope. Therefore
it must be declared as process variables, class constants, class parameters,
or global constants. If no variable with that name was declared this is a
type error.

Parallel Composition

An important concept of CSP is parallel composition. There are several
forms that differ in the way the processes synchronise. The CSPz syntax
allows the most common constructs for parallel composition in binary and
replicated form:

Expression ::= Expr ‖
Expr

Expr – generalised parallel

| ExprExpr‖ExprExpr – alphabetised parallel

| Expr ||| Expr – interleaving

| Expr [Expr] Expr – linked parallel

| ‖[Expr]SchemaText • Expr – generalised parallel

| ‖SchemaText • [Expr]Expr – alphabetised parallel

| |||SchemaText • Expr – interleaving

| [Expr]SchemaText • Expr – linked parallel

The generalised parallel operator P ‖
A

Q denotes that processes P and

Q run in parallel and synchronise on the events in A. Expressions P and
Q must denote processes and A a set of events. The resulting process can
engage in any communication that is not in A if either P or Q can engage in

36 3. CSP-OZ-DC

that communication. The process can also engage in a communication in A
provided both P and Q can engage in that communication synchronously.
The alphabetised parallel operator PA‖BQ is similar to P ‖

A∩B

Q . Thus, P

and Q synchronise on the intersection of the sets A and B . Additionally,
P may only engage in communications in A and Q in communications in
B . The interleaving operator P ||| Q is an abbreviation for P ‖

∅
Q . Thus,

P and Q do not synchronise at all.
The linked parallel operator P [R] Q is a combination of renaming,

generalised parallel composition and hiding. Here, R is a relation between
events, i. e., R : EVENTS ↔ EVENTS. The process P can asynchronously
engage in communication events that are not in domR. Likewise, the
process Q can engage in events that are not in ranR. Furthermore, if
(a, b) ∈ R, process P can engage in a, and process Q can engage in b,
they engage in these communication synchronously. The communication
is hidden outside the parallel composition. Thus, linked parallel can be
expressed as follows. First for each element (a, b) ∈ R the event a of
process P and event b in process Q are renamed to a fresh name. Then
the renamed processes resulting from P and Q are synchronised on these
fresh names by a generalised parallel operator. Finally, these fresh names
are hidden from the resulting process.

Other Constructs

Furthermore, the following constructs are allowed in CSPz:

Expression ::= Expression o
9 Expression – sequential composition

| o
9
SchemaText • Expression – sequential composition

| Expression 4 Expression – interrupt

| Expression \ Expression – hiding

| Expression[Renaming] – renaming

| Predicate & Expression – guarding

The sequential composition P o
9 Q behaves like the process P until P

engages in a termination event X. This event is hidden, i. e., replaced by

3.1. CSPz 37

a τ transition. Afterwards the process behaves like Q . There is also a
replicated form: The process o

9
a : 〈1, 2, 3〉 • P(a) is equivalent to P(1) o

9

P(2) o
9 P(3). In this case, the declaration following the symbol o

9
must

contain only a single variable of sequence type. The interrupt operator
P 4 Q behaves like P until the first visible event of Q occurs. Afterwards
it proceeds as Q . The hiding operator P \ A hides a set of events A from
a process P . Whenever P engages in an event a ∈ A the process P \ A
engages in a τ event. Otherwise, P \A behaves in the same way as P . The
renaming operator P [R] renames all events according to the function R.
The renaming function R must be a partial function EVENTS \ {τ,X} 7→
EVENTS \ {X}. Whenever P engages in an event a ∈ domR, the process
P [R] engages in R(a). Renaming an event to τ is the same as hiding the
event. The process g & P is equivalent to the process

if g then P else Stop .

If the guard predicate g holds in the current context, the process behaves
just like P . Otherwise, it behaves like Stop, i. e., it leads to a deadlock.

3.1.2. Semantics

In this chapter we give semantics for well-typed CSPz declarations. As
a first step, we need to define what a well-typed declaration is. The Z
standard uses type inference rules to define well-typed predicates and ex-
pressions and to compute the type of an expression. We extend these rules
for process expressions and CSP declarations.

The next step is to define a Z semantics for process expressions and for
process declarations. In the Z standard [ISO02] [[e]]E denotes the semantics
of an expression e and [[D]]D the semantics of a Z paragraph D . For process
expressions P , we define the Z semantics [[P]]E to represent the structure of
the process. It does not describe the behaviour of a CSP process, though.

Finally, the behaviour is given as an operational semantics. It is given as
a labelled transition system computed from the Z semantics of the process.

Extension to the Z Type Checker

The Z standard [ISO02] defines type inference rules to determine the type
of expressions and to check if it is well-typed. In this section we extend
these rules for process expressions. We will give new type inference rules
for process expressions.

38 3. CSP-OZ-DC

The basic notation for correctly typed expressions is Σ `E e o
o τ . This

denotes that, in the context of Σ, expression e is of type τ . The operator
`E is used for well-typed expressions; similar operators `P and `D are used
for well typed predicates and paragraphs. The signature Σ comprises the
table of symbols declared outside the expression e. In the meta-language it
is a mapping from names to types. Amongst others, the Z language defines
the following types (c. f. section 2.2.2):

• Given types are denoted by GIVENNAME , where NAME is an arbi-
trary name.

• Power set types are denoted by P τ . This is the type comprising all
sets containing elements of type τ .

• Cartesian product types are denoted by τ1 × · · · × τn .

• Schema types are denoted by [β], where β is a signature, i. e., a
mapping from names to types.

Process expressions are always of the type PROCESS . In the Z meta-
language we represent it as GIVENPROCESS . The definition of the type
inference rules for CSP expressions is straightforward. For example, the
rule for external choice is given here:

Σ `E e1
o
o τP

Σ `E e2
o
o τP

Σ `E e1 2 e2
o
o τP

(
τP = GIVENPROCESS

)
The part below the horizontal line is the conclusion of the rule. It states
that e1 2 e2 is a well-typed expression of type τP in the context of Σ. The
type τP is fixed to GIVENPROCESS by the condition to the right of the
rule. This rule can only be applied if the premises above the horizontal line
hold. In this case, e1 and e2 must also be of type τP in the same context
Σ.

The syntactic constructs for repeated application of operators may de-
clare new variables:

Σ `E t o
o τ

Σ⊕ β `E e o
o τP

Σ `E 2 t • e o
o τP

(
τ = P[β]
τP = GIVENPROCESS

)

3.1. CSPz 39

The premise of the rule demands that schema text t is well-typed with type
τ . This type must be a schema type P[β]. Here β is a signature that maps
the variable names declared in t to their types. The signature β is added
to the global signature Σ. The operator ⊕ adds the mappings from β to
the signature Σ returning a new signature. If any symbols are declared in
both Σ and β the types declared in β are used. The combined signature is
used to check if the process expression e is well-typed. Thus, e may use the
symbols that are declared in t as well as symbols coming from the current
context. Only if the type of e is GIVENPROCESS , the expression 2 t • e
is well-typed and its type is GIVENPROCESS , too.

The type-checking rule for a CSP paragraph is more complicated. The
problem here is that CSP processes are recursive, which is not possible in
Z. When type-checking a Z declaration like v == e, the type-checker first
determines the type of e and then adds v to the symbol table. If expression
e contains the symbol v this results in an error because the symbol v is
not yet defined. In CSPz we need to write recursive declarations, though.
Therefore, a special type-checking rule is necessary that adds the left-hand
side to the symbol table before determining whether the right-hand side is a
well-typed expression. This can be done since the type of the left-hand side
is known before parsing the right-hand side: it is always GIVENPROCESS .

Figure 3.1 depicts a rule can be used to check that a CSP declaration is
well-typed: The conclusion of this rule states that the CSP paragraph

p1
c= e1

...
pn

c= en
q1(t1)

c= e ′1
...
qm(tm) c= e ′m

is well-typed in the context of the signature Σ and declares new symbols
defined by σ. In this case, `D is used instead of `E because this is a dec-
laration, not an expression. For the same reason σ is not a single type
but a signature. This signature defines the types of the newly declared
symbols, in this case p1, . . . , pn , q1, . . . qm . These symbols are CSP pro-
cess identifiers, t1, . . . , tm are the schema text expressions declaring the
parameters of q1, . . . , qm , and e1, . . . , en , e ′1, . . . , e

′
m are the process expres-

sions that define the processes. The symbols p1, . . . , pn should be of type

40 3. CSP-OZ-DC

Σ `E t1 o
o τ ′1 · · · Σ `E tm o

o τ ′m
Σ⊕ β1 `E chartuple t1 o

o τ1

...
Σ⊕ βm `E chartuple tm o

o τm
Σ⊕ σ `E e1

o
o τP

...
Σ⊕ σ `E en o

o τP
Σ⊕ σ ⊕ β1 `E e ′1 o

o τP
...

Σ⊕ σ ⊕ βm `E e ′m o
o τP

Σ `D

p1
c= e1

...
pn

c= en
q1(t1)

c= e ′1
...
qm(tm) c= e ′m

o
o σ

τP = GIVENPROCESS
τ ′1 = P[β1] · · · τ ′m = P[βm]
σ = p1 : τP ;

...
pn : τP ;
q1 : P(τ1 × τP);
...
qm : P(τm × τP)}

Figure 3.1.: Type-checking rule for a CSPz process declaration

τP = GIVENPROCESS and q1, . . . , qm should be functions mapping their
parameters to GIVENPROCESS .

The first step in computing the type τi of the parameters is to determine
the type of the schema text ti . Therefore, the rule contains the premise
Σ `E ti o

o τ ′i for each ti . The type τ ′i must be a schema type (set of bind-
ings) with signature βi . This signature is a function mapping the symbols
declared in ti to their types. With this signature the type of the charac-
teristic tuple of ti , denoted by chartuple ti , can be determined to compute
the parameter type τi . While τ ′i is a signature type where the order of the
declared parameters is not relevant, τi is a Cartesian product of the types
declared in ti in the appropriate order. If ti declares only one parameter
then τi is the type of that parameter.

Furthermore, the rule requires that expressions e1 . . . en , e ′1, . . . , e
′
m are

well-typed expressions of type GIVENPROCESS . They may use symbols

3.1. CSPz 41

declared in the signature Σ that represents the current context. They may
also use the newly defined process identifiers pi , qi from the signature σ
recursively. Furthermore, the expression e ′i can use the symbols from βi ,
which are the parameters declared in the schema text ti .

Embedding CSP processes in Z meta-language

Since we allow mixing CSP processes with Z expressions and thus allow
functions returning processes (parametrised processes) or external choice
over a set of CSP processes, we need to define a Z semantics for CSP.
Fischer [Fis00] defines the Z semantics of a CSP process as the operational
semantics. However, for recursive process equations defining an operational
semantics directly is cumbersome. Therefore, we use a different approach.

It is not necessary that the Z semantics defines the behaviour of the CSP
process; it suffices if it defines the structure. The abstract semantics can be
represented by a free type. Under this semantics, two CSP process expres-
sions are equal if they are syntactically equivalent. A free type covering
the concepts of CSPz as defined in the previous section is the following.

PROCESS ::= Stop | Skip | Ω | Chaos〈〈P EVENTS 〉〉 | Diver
| prefix 〈〈EVENTS ,PROCESS 〉〉
| extchoice〈〈World → PROCESS 〉〉
| intchoice〈〈World → PROCESS 〉〉
| sequence〈〈seqPROCESS 〉〉
| genparallel〈〈P EVENTS ,World → PROCESS 〉〉
| alphparallel〈〈World → PROCESS ×P EVENTS 〉〉
| linkedparallel〈〈PROCESS , (EVENTS ↔ EVENTS),

PROCESS 〉〉
| interrupt〈〈PROCESS ,PROCESS 〉〉
| hiding〈〈PROCESS , P EVENTS 〉〉
| renaming〈〈PROCESS , (EVENTS ↔ EVENTS)〉〉
| call〈〈NAME 〉〉
| call〈〈NAME ×World〉〉

By WP := carrier GIVENPROCESS we denote the carrier set of the
above type. Likewise we denote by WE := carrier GIVENEVENTS the set
of all events. To represent replicated operators like 2 t • P we use a
function mapping from the type induced by t to PROCESS . As the type
of t can be arbitrary we use World to represent the set of all elements.
Such a set cannot be defined in Z because it would not be well-typed.

42 3. CSP-OZ-DC

Because the meta-language of Z is untyped, this set can be defined in the
meta-language, though. We assume that Stop, Skip are constants of type
PROCESS and prefix , extchoice, etc. are functions returning objects of
type PROCESS , just as if PROCESS had been declared as free type in
some parent Z section. The functions are injective and pairwise disjoint.

A Z model M is a binding: a partial function mapping variable names to
values. It provides values for all given sets and all constants and functions
declared in axiomatic and horizontal definitions in the preceding specifica-
tion. It also provides values for variables bound by λ operators or logical
quantifier. The semantics of an expression [[e]]E is a function from models
to values.

Using the data type PROCESS and the constants and functions defined
above, it is straightforward to give the abstract semantics for all CSP
operators. For example, the semantics for external choice is defined as
follows.

[[2 t • P]]EM = extchoice([[λ t • P]]EM)
[[P 2 Q]]EM = extchoice({1 7→ [[P]]EM , 2 7→ [[Q]]EM })

The first line gives the semantics of the expression 2 t • P . It reuses
the Z semantics for λ expressions to define the semantics of the replicated
operator. The operator λ builds a function from the set induced from the
schema text t to the set of processes. Then the extchoice function from the
definition of PROCESS is applied to define the semantics. The second line
gives the semantics of the expression P 2 Q . It uses [[·]]E and M recursively
to compute the semantics of P and Q . Since extchoice takes a function
as parameter, a function that maps 1 to the semantics of P and 2 to the
semantics of Q is created.

The definition of PROCESS above provides no construct for guarding.
The reason is that guarding is replaced by an if construct as follows.

[[g & P]]EM = [[if g then P else Stop]]EM

The semantics for a declaration is a relation from models to models. This
relation contains a tuple M 7→ M ′ if M ′ contains M and additionally the
valuation for the newly declared symbols. The model M is a consistent
model for all the preceding declarations and the model M ′ is a consistent
extension of M including the new declaration. Note that there may be
several consistent extension M ′. If the declaration is inconsistent there is

3.1. CSPz 43

no M ′. Thus, the semantics of a declaration is a relation, not a function.
The semantics for a recursive process equation is defined as follows.

p1
c= e1

...
pn

c= en
q1(t1)

c= e ′1
...
qm(tm) c= e ′m

D

=

{M ,M ′,M ′′ : Model |
M ′ = M ∪ {p1 7→ call(p1), . . . , pn 7→ call(pn),

q1 7→ {t : W • t 7→ call(q1, t)}, . . . ,
qm 7→ {t : W • t 7→ call(qm , t)}} ∧

M ′′ = M ∪ {p1 7→ [[e1]]
EM ′, . . . , pn 7→ [[en]]EM ′,

q1 7→ [[λ t1 • e ′1]]
EM ′, . . . ,

qm 7→ [[λ tm • e ′m]]EM ′}
• M 7→ M ′′}

The semantics is computed in two steps. In the first step the model M ′ is
created. In this model the valuations of the symbols p1, . . . , pn are just call
processes. The valuation for each of the symbols q1, . . . , qn is a function
that assigns to the input parameters the corresponding parametrised call
process. The intermediate model M ′ is used to assign a meaning to the
right-hand sides of the process equations e1, . . . , en and e ′1, . . . , e

′
m . Thus,

the semantics of the symbol p1 occurring on the right-hand side of the
equation is the process call(p1). The final model M ′′ assigns to each symbol
p1, . . . , qm the semantics of the right-hand side. This model is used to define
the semantics of the declaration.

Example 3.3. Let a, b : [x : Z] be channels with parameter x : Z. Consider
the following recursive equation:

P c= a?x : Z → Q(x)

Q(y : Z) c= b!x == y + 1 → P

When computing the semantics for this declaration, we start with some
model M that already assigns to a and b an injective function [x : Z] →
EVENTS . In the first step M ′ is build. The model M ′ assigns to P the con-
crete process call(P) and to Q a function Z → PROCESS with M ′(Q)(t) =
call(Q , t). Using this model M ′, the right-hand sides of the process equa-
tions are evaluated. The resulting values [[a?x : Z → Q(x)]]EM ′ and

[[λ y : Z • b!x == y + 1 → P]]EM ′

44 3. CSP-OZ-DC

are assigned to the symbols P and Q in M ′′. When evaluating multi-
prefixes the corresponding operators 2 and u are created. Thus the final
model M ′′ looks as follows.

M ′′(P) = extchoice({t : Z • t 7→ prefix (a〈| x == t |〉, call(Q , t))})
M ′′(Q) = {y : Z •

y 7→ intchoice({y + 1 7→ prefix (b〈| x == y + 1 |〉, call(P))})}

Operational Semantics

The operational semantics of CSPz is based on labelled transition systems.
The configurations are the semantic values from WP , the world of pro-

cesses in CSPz. In Z, the expression carrier τ denotes the set of all ele-
ments of type τ . The transitions are labelled by elements from WE , the
semantic values of events. A labelled transition system is represented as a
tuple (WP , WE , p0,−→), where p0 ∈ WP is the initial configuration and
−→⊆ WP×WE×WP is the transition relation. The element (p, α, p′) ∈−→
means that there is a transition from process p to process p′ under the event
α. It is also denoted by p α−→ p′.

The transition relation −→ is almost the same for all models; only the
transitions for the processes call(P) and call(P , t) depend on the context.
The context is given as a Z model M and is computed using [[·]]D according
to the semantics defined in the previous section. The transition relation is
generated inductively by the following inference rules. We use the symbols
P ,Q to denote processes, α to denote arbitrary events, a for events except
X and τ . When defining the operational semantics for replicated operators,
we use the symbol P to denote a function that maps an arbitrary type into
the set of processes.

Basic Processes For the process Stop no outgoing transition is defined.
The process Skip terminates immediately emanating a X event. The ter-
minated process is conventionally represented as Ω and is equivalent to the
Stop process, i. e., no outgoing transition is defined for this process.

Skip X−→ Ω

3.1. CSPz 45

The process Chaos can either communicate some event or make an internal
transition to the Stop process. In the second case the system deadlocks.

Chaos(A) a−→ Chaos(A)
[a ∈ A]

Chaos(A) τ−→ Stop

The process Diver diverges by emanating τ events.

Diver τ−→ Diver

Prefixing As explained earlier, multi-prefixing is always translated to ex-
ternal and internal choice over event prefixing. Therefore, only a simple
rule for event prefixing is needed.

prefix (a,P) a−→ P

Internal and External Choice The binary internal choice is a special case
of the parameterised internal choice. The latter has the following simple
rule:

intchoice(P) τ−→ P
[P ∈ ranP]

Here P is a function mapping some arbitrary elements to processes. An
element from the domain of P contains the variables defined in the schema
text t of the original CSPz expression u t • P . These variables are not
relevant for the semantics, therefore the rule only uses ranP. The process
intchoice(P) can enter any of these processes by an internal τ -transition.

In case of external choice extchoice(P) there are two rules: A visible
event a can be performed if one of the processes P in ranP can perform
this event. In this case, the successor of the external choice is the successor
of P .

P a−→ P ′

extchoice(P) a−→ P ′
[P ∈ ranP]

The other possibility is that some processes in ranP can perform a τ -
transition. We follow [Fis00] and demand that all processes that can per-
form τ -transitions take them simultaneously. This is necessary to prevent

46 3. CSP-OZ-DC

infinite chains of τ -transitions as is explained in [Fis00]. We use the set T
to denote the pre-image of all processes that can perform τ -transitions.

∀ t : T • Pt τ−→ P ′t
extchoice(P) τ−→ extchoice(P ′)

T = {t : domP |

∃P ′ • Pt τ−→ P ′}
T 6= ∅
T −C P = T −C P ′

Parallel Composition Three rules are needed for generalised parallel com-
position, one for asynchronous steps, one for synchronous steps, and one
for termination. The following rule is for asynchronous steps:

P α−→ P ′

genparallel(A,P) α−→ genparallel(A,P ⊕ {t 7→ P ′}))

[
(t 7→ P) ∈ P
α 6∈ A ∪ {X}

]
Here P is one of the processes in the range of P. The rule is applicable if
P can evolve with the communication α that is not in the synchronisation
alphabet and P ′ is its successor. Note that the internal operation α = τ is
allowed. The parallel composition can then evolve to P⊕{t 7→ P ′}, i. e., P
is replaced by P ′ in P. For events from the alphabet A all processes need
to engage in a transition synchronously:

∀ t : domP • Pt a−→ P ′t
genparallel(A,P) a−→ genparallel(A,P ′)

[a ∈ A,domP = domP ′]

Termination needs a special rule that is similar to the asynchronous
rule. The difference is that the X event is communicated only after the
last process has terminated. The X events of the processes that terminated
before are replaced by τ events.

P X−→ Ω

genparallel(A,P) τ−→ genparallel(A,P ⊕ {t 7→ Ω})
[(t 7→ P) ∈ P]

genparallel(A,P) X−→ Ω
[ranP = {Ω}]

3.1. CSPz 47

With the alphabetised parallel operator every process has its own syn-
chronisation alphabet. Instead of a function P : World → PROCESS a
function PA : World → PROCESS ×P EVENTS is used. A process syn-
chronises with all processes that have the same event in their alphabet.
The τ events are always asynchronous:

P τ−→ P ′

alphparallel(PA) τ−→
alphparallel(PA⊕ {t 7→ (P ′,A)})

[(t 7→ (P ,A)) ∈ PA]

For visible events the following rule is used:

∀ t : domPA′ • (PA t).1 a−→ (PA′ t).1

alphparallel(PA) a−→
alphparallel(PA⊕ PA′)

domPA′ =

{t | a ∈ PA t .2}
PA′ 6= ∅
∀ t : domPA′ •

PA t .2 = PA′ t .2

Note that x .1 and x .2 select the first and second element of a Cartesian
tuple x , in this case the process and the synchronisation alphabet. The
function PA′ : World → PROCESS ×P EVENTS gives the successor state
of exactly those processes that synchronise on the event a. The event a
must be in the synchronisation alphabet of some process, so PA′ may not
be empty. Again we need a special termination rule:

P X−→ Ω

alphparallel(PA) τ−→
alphparallel(PA⊕ {t 7→ (Ω,A)})

[(t 7→ (P ,A)) ∈ P]

alphparallel(PA) X−→ Ω
[∀ t : domPA • PA t .1 = Ω}]

Recursion If a process identifier P occurs recursively on the right-hand
side, this is translated to a process call(P , e) where e is the value of the
parameter. If P takes more than one parameter, e is a tuple. To determine

48 3. CSP-OZ-DC

the operational semantics of the process P the model M is needed. This is
the only part where the transition relation −→ depends on the underlying
Z model. The called process is entered with a τ -transition. If the process
identifier P does not take any parameter, [[P]]EM is the associated process
term. Otherwise, [[P]]EM is a function mapping values to process terms.
The following two rules distinguish these cases:

call(P) τ−→ [[P]]EM

call(P , e) τ−→ [[P]]EM (e)

3.2. CSP-OZ-DC Classes

The language CSP-OZ-DC is an extension of Object-Z, which is an exten-
sion of Z. Thus, every Z specification is already a valid CSP-OZ-DC spec-
ification, but not the other way round. In Z the basic building blocks of a
specification are paragraphs. A paragraph is either an axiomatic declara-
tion, a schema definition, a free type declaration, a given type declaration,
or a horizontal definition. In Object-Z [Smi00] a new kind of paragraph
was introduced, namely Object-Z classes. Likewise, the main extension
of the language CSP-OZ-DC is the CSP-OZ-DC class declaration. This
section gives the syntax and semantics for CSP-OZ-DC classes.

3.2.1. Syntax

The syntax for a CSP-OZ-DC class is as follows.

COD Class ::= NAME [[Formals]] [(SchemaText)]
Interface
ProcessDeclaration
[Z Paragraph . . .Z Paragraph]
State
[Init]
[Operation . . .Operation]

[
DC]

3.2. CSP-OZ-DC Classes 49

This declaration resembles Object-Z class declarations. The main syntactic
difference is the interface part that declares the CSPz channels the class
uses to communicate with its environment. In the remainder of the section
the parts of CSP-OZ-DC classes are presented in details. The syntax is
similar to CSP-OZ classes which are described in [Fis00]. Only the DC
part is new in CSP-OZ-DC. We therefore only give a brief summary and
provide the syntactic rules.

Interface Part

In the interface part the channels of a class are declared. A channel dec-
laration introduces a new channel that allows communicating synchronous
events. Each channel can have a type that declares the data values ex-
changed via this channel. In textbook CSP the channel type is a Cartesian
tuple, however, in the Z world it makes more sense to use schema types
for communications. The syntax of a channel declaration has already been
explained in section 3.1. It is given here again for completeness.

Interface ::= ChannelDecl NL . . .NL ChannelDecl
ChannelDecl ::= chan NAME , . . . ,NAME[: Expression]

| local chan NAME , . . . ,NAME[: Expression]

Process Declaration

The CSP process declaration is identical to the CSPz process declaration
introduced in section 3.1:

ProcessDeclaration ::= ProcessEquation NL . . .NL ProcessEquation

ProcessEquation ::= NAME[(SchemaText)] c= Expression

In every CSP-OZ-DC class a process named main must be declared. This
is the process that will be entered initially.

Z Paragraphs

A CSP-OZ-DC class may include arbitrary Z paragraphs declaring new
symbols that are local in the class. These symbols have some values that
do not change during the lifetime of the class. For example, axiomatic
definitions may be used declaring constants, auxiliary functions, or internal
parameters invisible to the environment.

50 3. CSP-OZ-DC

State

The state schema is declared in the same way as in Object-Z. The state
schema is an unnamed schema that declares the state variables of a CSP-
OZ-DC class.

State ::=
DeclPart

[
Predicate]

The syntax for DeclPart is taken from the Z standard. It is a list of dec-
larations. A declaration can be a simple variable declaration v1, v2 : World
declaring typed variables, a schema reference including the declaration and
invariant of the referred schema, or a definition v == e declaring v to be
equal to expression e. The Predicate serves as a global invariant of the state
schema. State variables may be changed by operation schemas, which are
triggered by communication events.

Init Schema

The Init schema is a simple schema that gives the initial values of the state
variables. Unlike all the other schemas in Z it only contains the predicate.
The declaration part is always implicitly the state schema of the current
class. If the Init schema is omitted the schema with predicate true is used
by default, i. e., every value that satisfies the state invariant is allowed as
initial value.

Init ::= Init
Predicate

Operations

Each communication event can be linked to an operation on the state
variables (the variables declared in the state schema). To this end, an
operation schema is used. The syntax is as follows:

Operation ::= com NAME
∆(NAME , . . . ,NAME)
DeclPart

[
Predicate]

3.2. CSP-OZ-DC Classes 51

An operation is a schema with a special name com NAME . Here NAME
is the name of the channel that is associated with this operation. The
first line of the schema gives the ∆-list, which lists the variables that are
changed by the operation. The variables listed here must be declared in the
state schema. The remaining part of the declaration can declare input and
output variables. These must be those variables declared in the schema
declaration of the channel. The variables decorated by ? are inputs of the
operation. Those decorated by ! are outputs. The predicate can reference
the variables in the state schema (pre-state), the same variables decorated
with ′ (post-state), and the input and output parameters declared in the
DeclPart . For any state variable v in the state schema that is not in the
∆-list, the equation v = v ′ is implicitly added to the predicate to denote
that this variable does not change.

Duration Calculus Part

The DC part is a list of Duration Calculus formulae that restrict the timing
behaviour of the CSP-OZ-DC class. Only the counterexample formulae
introduced in section 2.3.6 are allowed. The formulae are separated by
newline characters (NL).

DC ::= ce formula NL . . .NL ce formula

ce formula ::= ¬ (phase a (phase | events)
a · · · a (phase | events) a true)

phase ::= (true | dPredicatee)[∧ ` ∼ t]
[∧ �NAME . . . ∧ �NAME]

∼ ::= ≤ | < | > | ≥
events := lNAME | 6 lNAME

| events ∨ events | events ∧ events

3.2.2. Case Study

To illustrate the syntactic constructs of CSP-OZ-DC, we give as example
the specification for a small part of an elevator. It is kept simple and only
contains the core of the controller. This example is used as a case study to
demonstrate the features of the combined language CSP-OZ-DC without
bloating the specification.

52 3. CSP-OZ-DC

Communication aspects are described with CSPz. For the controller of
the elevator we use four signals (channels that carry no data values):

chan start , stop, passed
local chan newgoal

The channel newgoal is an internal operation. It is used to determine the
next floor that the elevator has to go to. The start operation is an external
event used to start the engines. Likewise the stop event is used to stop
the engines. The passed event is signalled by the environment whenever
the elevator passed one floor. For the elevator controller the admissible
sequences of events are defined by this CSP process:

main
c= newgoal → start → Drive

Drive c= (passed → Drive) 2 (stop → main)

The elevator has a cyclic behaviour switching between the processes main
and Drive. The elevator first chooses a new goal floor, then it starts the
engines and switches to the Drive process. It can either pass a floor and
keep on driving, or stop and return to the main process. We will see later
that the external choice between the passed and stop event is determined
by the Object-Z and Duration Calculus part of the specification.

Data aspects are described by Object-Z state and operation schemas.
The floors are modelled by integers ranging from the constants Min to Max .
No concrete values for the boundaries are given but the only requirement is
Min < Max . In Z these constants are declared in an axiomatic definition:

Min,Max : Z

Min < Max

The internal state of the elevator is given by the following state schema.
It contains two variables for current and goal floor and a variable dir ,
which describes the direction the elevator is heading to (1 for upwards,
−1 for downwards). The initial values for the variables are given by the
Init schema. One could also add an invariant like Min ≤ current ≤ Max
to the state schema, however, we later want to show that the remaining
specification will always keep the value of current in this range. If we
added the invariant to the state schema, it would hold trivially because a
communication that lead to a violation of the invariant would be rejected.

3.2. CSP-OZ-DC Classes 53

current , goal : Z
dir : {−1, 0, 1}

Init
goal = current = Min
dir = 0

The link between events and states is established by communication
schemas. By naming conventions, the following schema describes the effect
that the passed event induces:

com passed
∆(current)

current ′ = current + dir

The ∆ list on the first line contains the variables that are changed by the
operation. In this case, only current is changed by adding the value of dir ,
which increases or decreases the floor counter depending on the value of
dir .

For simplicity we abstracted from the set of requested floors and the
algorithm to choose the next goal floor. Instead the goal floor is chosen
non-deterministically from the range of all floors except the current one.

com newgoal
∆(goal)

Min ≤ goal ′ ≤ Max
goal ′ 6= current

When the elevator starts, the controller chooses the direction in accordance
with the position of the new goal floor: If the number of the goal floor is
larger than the current floor, the elevator goes up, denoted by dir ′ = 1, if
the goal floor is smaller, the elevator goes down.

com start
∆(dir)

goal > current ⇒ dir ′ = 1
goal < current ⇒ dir ′ = −1

Finally, the elevator is not allowed to stop before reaching the goal floor.
This can be stated by a communication schema with an empty delta list
that restricts the pre-state.

54 3. CSP-OZ-DC

com stop
∆()

goal = current

Real-Time aspects are described with Duration Calculus (DC) by coun-
terexample formulae. In the case study, real-time properties ensure that
the elevator stops when it reaches the goal floor instead of passing to the
next floor. To achieve this, a minimum time of three seconds between two
adjacent passed events is demanded. This is expressed by a negated coun-
terexample where two consecutive passed events occur, with a time span
of at most three seconds between the events.

¬ 3(l passed a ` ≤ 3 a l passed) .

Furthermore it is claimed that the elevator stops within two seconds. The
following formula states the impossibility of the stop event not occurring
if the goal has been reached for at least two seconds.

¬ 3(dcurrent 6= goale a (dcurrent = goale ∧ ` ≥ 2 ∧ � stop))

The complete specification of the elevator is shown in Fig. 3.2. For
all reachable states of the elevator the invariant Min ≤ current ≤ Max
holds. However, a manual proof would be very complex, since does not
only depend on the operation schemas but also on the real-time aspects
of the elevator: The elevator will stop before it passes its goal floor. In
section 6.4.4 we will present a method to prove this invariant automatically.

3.2.3. Semantics

When evaluating the semantics of a specification according to the Z stan-
dard [ISO02], the schema

Name
SchemaText

is rewritten to

Name == [SchemaText] .

3.2. CSP-OZ-DC Classes 55

Elevator
chan start , passed , stop
local chan newgoal
main

c= newgoal → start → Drive
Drive c= (passed → Drive) 2 (stop → main)

Min,Max : Z

Min < Max

current , goal : Z
dir : {−1, 0, 1}

Init
goal = current = Min
dir = 0

com newgoal
∆(goal)

Min ≤ goal ′ ≤ Max
goal ′ 6= current

com start
∆(dir)

goal > current ⇒ dir ′ = 1
goal < current ⇒ dir ′ = −1

com passed
∆(current)

current ′ = current + dir

com stop
∆()

goal = current

¬ 3(l passed a ` ≤ 3 a l passed)
¬ 3(dcurrent 6= goale

a (dcurrent = goale ∧ ` ≥ 2 ∧ � stop))

Figure 3.2.: Elevator specification

56 3. CSP-OZ-DC

This defines a new constant Name and sets its value to the expression
[SchemaText]. For CSP-OZ-DC we proceed the same way. To this end,
we extend Z expressions to include anonymous CSP-OZ-DC classes of the
form [COD SchemaText]. The syntax of COD SchemaText is the one for
named CSP-OZ-DC classes:

COD SchemaText ::= Interface
ProcessDeclaration
[Paragraph . . .Paragraph]
State
[Init]
[Operation . . .Operation]
| DC

When determining the semantics, the following CSP-OZ-DC paragraph

Name[Formals](Params)
Contents

it is rewritten to

Name[Formals] == λParams • [Contents] .

To provide semantics for a CSP-OZ-DC class, a semantic domain is nec-
essary, in which the semantics for each language can be expressed. Duration
Calculus extended by Z interpretations and CSP events is suitable for this.
We give semantics for such a class in terms of the set of Duration Calculus
interpretations that satisfy the specification. The semantics is based on
the trace semantics for CSP, the history semantics for Object-Z, and the
set of interpretations for Duration Calculus formulae.

As already mentioned in section 2.3, we use interpretations of the form
I : Time → Model, where Time == R+ is the time domain and Model ==
NAME 7→ W is the set of Z models. This is necessary to support complex
data types that are used in the Object-Z part. The model must give values
for all variables used in the CSP-OZ-DC class. These include the variables
declared in the state schema of the class and in axiomatic definitions in the
CSP-OZ-DC class. Also this model includes a model of the environment,
in which the class is declared. Furthermore, for each channel there is a

3.2. CSP-OZ-DC Classes 57

Boolean channel variable with the same name. If a channel has parameters,
e. g., if the channel was declared as c : [x , y : Z], there is another parameter
variable that holds the parameters, in the example c/. : [x , y : Z]. The
symbol /. is just an arbitrary symbol to distinguish the parameter variable
from the channel variable.

Whenever an event occurs, the channel variable corresponding to the
channel changes and the parameter variable must be set to the value that
is sent over the channel. The latter must be stable for some positive time.
The value of the Boolean channel variable must not change until the next
event occurs. The following diagram illustrates an interpretation in which
the events c〈| x == 1; y == 2 |〉 and c〈| x == 2; y == 1 |〉 are sent at
times 2 and 5.

1 2 3 4 5

c/..y

c/..x

c
f

t

2 1

1 2

Initially, the channel variable c is either false or true. In the diagram it
starts with false. Its value changes whenever an event of channel c occurs.
The value of the parameter variable c/. is only relevant immediately after
an event on channel c occurs. At other times its value is arbitrary.

The variables from axiomatic definitions and from the environment must
have the same value for all points in time t : Time. For the elevator exam-
ple from the last section this means that Min and Max always keep their
initial values. Also, the semantics of symbols declared by the (implicit)
environment, e. g., Z, +, −, etc. may not change during a single inter-
pretation. There may be different interpretations with different values for
Min and Max or different models of numbers, though.

An interpretation I is in the set given by the semantics of a CSP-OZ-DC
specification if it satisfies the CSP, Object-Z, and Duration calculus part.
For the CSP and Z part only the untimed behaviour of I is relevant. It
can be computed as follows: First the moments 0 = t0 < t1 < t2 < . . .
are determined when the interpretation I(t) changes. For almost all t
in the interval [ti , ti+1] the interpretation is constantly I(t) = Mi and it
changes at ti+1, so Mi 6= Mi+1. The interpretation may only change if

58 3. CSP-OZ-DC

an event occurs, i. e., the value of one of the channel variables c changes.
In a CSP-OZ-DC class only one event can occur at a given time ti , so
there should be a unique ci with Mi−1(ci) 6= Mi(ci). If more than one or
none of the channel variables change, the interpretation does not satisfy
the specification. The parameters of the i -th event are given by Mi(ci/.).
Thus, the i -th event is ci(Mi(ci/.)). This produces a sequence

Untime(I) = 〈M0, c1(M1(c1/.)),M1, c2(M2(c2/.)),M2, . . . 〉 .

The sequence is finite if there is an n such that the interpretation is constant
for almost all t in [tn ,∞] else it is infinite.

To determine whether an interpretation I satisfies the CSP part of a
CSP-OZ-DC part (denoted by I |= CSP part), we compute the operational
semantics of the main process of the CSP part. This yields a labelled
transition system (WP , WE , p0,−→). Furthermore, the alphabet A of the
CSP part is computed, which is the set of channels that syntactically occur
in the CSP processes of the class. Of the sequence Untime(I) only the
events in the alphabet A are considered. The interpretation satisfies the
CSP part if and only if there is a run of the labelled transition system
corresponding to this sequence of events.

The interpretation satisfies the Object-Z part (denoted by I |= OZ part)
if and only if the sequence Untime(I) is in the history semantics [Smi92] of
the Object-Z part of the CSP-OZ-DC specification. This means that the
following must hold.

• M0 ∈ [[Init]]P, i. e., the first element of the sequence is a model of the
Init schema.

• Mi ∈ [[State]]P for all i , i. e., all models Mi of the sequence are models
of the State schema. Particularly, they satisfy the state invariant.

• (Mi−1∪M ′
i ∪Mi(ci/.)) ∈ [[com ci]]

P, i. e., the pre-state, post-state, and
parameters fulfil the predicate given in the operation schema com ci .
Here M ′

i denotes the same model as Mi except that it provides values
for primed variables, i. e., all names of the form v in the domain are
replaced by v ′.

In section 2.3, we already defined what it means that an interpretation
I satisfies a Duration Calculus formula F (I |= F). The Duration Cal-
culus part of a CSP-OZ-DC part is a list of formulae. The interpretation
satisfies the complete DC part if it satisfies every formula. An equivalent

3.3. Parallel Composition of Systems 59

formulation is that the interpretation satisfies the conjunction of all DC
formulae of the class.

To integrate the semantics into the Z meta-language we extend the def-
inition of [[·]]E to CSP-OZ-DC classes as follows:

[Interface
CSP part
Paragraphs
OZ part
| DC part]

E

M =

{M ′ : Model; I, I ′ : Time → Model |
(M ,M ′) ∈ [[Paragraphs]]D

∧ ∀ t : Time • M ′ ⊆ I(t)
∧ I |= CSP part
∧ I |= OZ part
∧ I |= DC part
∧ ∀ t : Time • I ′(t) = Interface C I(t)
• I ′}

The model M is the model of the environment. This model is extended
according to the semantics of Paragraphs in the CSP-OZ-DC specification
to a model M ′ that provides values for constants like Min and Max in
the elevator specification. Each model is then extended to a interpretation
I. For each time t the model given by the interpretation I(t) must be
an extension of the model M ′. Furthermore, the interpretation I must
satisfy all conditions of the CSP, OZ, and DC part of the specification.
Then the interpretation I ′ is build from I by restricting the models to
include values for the variables occurring in the interface, only. Thus, the
private state variables, local channels, and constants declared in the class
are removed. The semantics of the class is the set of all interpretation I ′
created according to the above procedure.

3.3. Parallel Composition of Systems

In CSP-OZ-DC large systems can be build from several classes. Unlike in
CSP, we have only a single mechanism for parallel composition, namely
conjunction. If c1, c2 are CSP-OZ-DC classes then we write c1 ∧ c2 to
denote the parallel composition of the classes c1 and c2. It is similar
to schema conjunction: first the interpretations I1, I2 of c1 and c2 are
computed. If these interpretation agree on their common domain, i. e., if
I1(t) ∪ I2(t) is a model, then the interpretation with t 7→ I1(t) ∪ I2(t) is
a valid interpretation of c1 ∧ c2. The exact definition is as follows:

60 3. CSP-OZ-DC

[[c1 ∧ c2]]
EM =

{I1 : [[c1]]
EM ; I2 : [[c2]]

EM
| ∀ t : Time • I1(t) ∪ I2(t) ∈ Model
• λ t : Time • I1(t) ∪ I2(t)}

In CSP-OZ other parallel operators, e. g., linked parallel, are defined.
These can be expressed by applying renaming before using conjunction. For
renaming we use the same syntax as in Z. The expression c1[j1/i1, . . . , jn/in]
denotes the class c1 where the communication channel ik is renamed to jk .
The i1, . . . , in must all be different. However, the case c1[j/i1, . . . , j/in] is
allowed, where multiple events i1, . . . , in are renamed to the same event
j . In that case, we require that at each point in time at most one event
ik occurs. Let I be an interpretation of c1 and let t1 < t2 < . . . be
the sequence of points of time when such an event occurs. Let k1, k2, . . .
denote the indices of the events ikj that occur at time tj . Then we define
the interpretation I ′ of the renamed class as

I ′(t)(j) =

false if t ∈ [0, t1[,
false if t ∈ [t2∗j , t2∗j+1[,
true if ∈ [t2∗j−1, t2∗j [, and

I ′(t)(j/.) =

{
arbitrary if t ∈ [0, t1[,
I(t)(ikj /.) if t ∈ [tj , tj+1[.

Thus, the value of I ′(t)(j) changes at each tj , which is interpreted as
the occurrence of the event j , and the value of I ′(t)(j/.) equals the value
I(t)(ikj

/.) of the last event that occurred before time t .
The last operator defined on CSP-OZ-DC classes is hiding, which just

removes the corresponding channel variables and parameter variables from
an interpretation:

[[c \ (i1, . . . , in)]]
E
M = {I : [[c]]EM •

λ t : Time • {i1, . . . , in , i1/., . . . , in/.} −C I(t)}

With renaming, hiding, and conjunction we can express the remaining
parallel operators of CSP: Linked parallel composition c1[in ↔ out]c2 can
be expressed as (c1[x/in] ∧ c2[x/out])\(x) where x is a fresh channel name.
Interleaving c1 ||| c2 is a special case of generalised parallel c1 ‖

∅
c2 with an

empty synchronisation alphabet. Generalised parallel can be expressed by
renaming all unsynchronised channels ch to unique names ch1 in the first

3.4. Discussion and Related Work 61

process and ch2 in the second process. After conjunction, they are renamed
back. For example, if c1 and c2 use only one channel ch, interleaving can
be expressed as

c1 ‖
∅

c2 = (c1[ch1/ch] ∧ c2[ch2/ch])[ch/ch1, ch/ch2] .

3.4. Discussion and Related Work

3.4.1. CSPz

In this chapter we have presented a variant of CSPz that differs from Fis-
cher’s language presented in [Fis00]. The differences are only in some de-
tails and fixes some oddities of this language. The main syntactic change
is the different channel declaration and the corresponding change to the
multi-prefix operator. On the semantical side we additionally presented
type-checking rules and provided a new Z semantics [[P]]E of a CSP process
P that describes the structure of a process.

Channel Types

Fischer [Fis00] has two slightly different syntactic constructs for channel
declaration for CSPz and CSP-OZ. For CSPz the declaration can be of an
arbitrary type, while for CSP-OZ the type of the event must be a schema
type. This has a simple reason: a Z schema references its parameters by
name. Therefore it is convenient if every parameter that can be communi-
cated over a channel gets a name that can be used for Object-Z. In textbook
CSP, however, the parameters are traditionally identified by their position
in a tuple.

Fischer therefore demanded that interface declarations in CSP-OZ have
the form

chanc : [p1 : T1; . . . ; pn : Tn]

When translating such a declaration into CSPz the names p1, . . . , pn were
thrown away and the channel got a tuple type:

chanc : T1 × · · · × Tn

However, having a channel with two different types, one for CSP and
another for Object-Z, is disturbing. It may also lead to subtile errors when

62 3. CSP-OZ-DC

the order of the parameters is accidently swapped in two different classes.
In [Fis00] the parameters are identified by their position instead of their
name.

We presented in this chapter a way to work with channels having schema
types. It only requires minimal syntactic changes to the multi-prefix oper-
ator to reference the parameters by name.

Semantics of CSPz

In [Fis00] Fischer defined the operational semantics for CSPz in parallel
with the Z semantics. His definition has problems, though. For example,
consider a simple recursive processes

P c= a → P (3.1)

To determine the semantics of P we need to compute the semantics of the
right-hand side [[a → P]]EM0. The model M0 cannot provide a value for
P because its semantics has not been computed, yet. According to [Fis00]
page 64, [[·]]E is considered to be an extension of the operational semantics
[[·]]O. Therefore, [[a → P]]EM0 should denote the operational semantics of
a → P . However, the recursive equation of P is not accessible through M0,
hence the operational semantics cannot be fully given.

We solve this by separating the Z semantics [[·]]E from the operational
semantics [[·]]O. The Z semantics of the above process [[a → P]]EM0 is just
an abstract syntax tree of the expression prefix ([[a]]EM0, call(P)). Only the
value of a is further evaluated according to the underlying model M . The
operational model is only computed for the complete paragraphs (3.1). The
labelled transition system uses the model of the complete specification. In
this model the value of P is the abstract syntax tree, which suffices to give
the operational semantics of P and a → P .

In [Fis00] the configurations of the labelled transition system are built
from a process expression and a model M . The model M is used to evalu-
ate the variables in the event part of the prefix operator or to evaluate the
parameters when another process is called. However, sometimes the oper-
ational semantics fails to evaluate the expressions. For example, consider
the configuration

(2 x : 0..1 • if x == 0 then b → Stop else Stop,M) .

The process part is of the form 2 e • p, for which Fischer defined the
following rule in [Fis00] page 74.

3.4. Discussion and Related Work 63

∀ t : [[e]]EM • C (t) = (p,M ⊕ t)

(2 e • p,M) τ−→2 [[e]]EM • C
[[[e]]EM 6= ∅]

In this case, e is x : 0..1 and [[x : 0..1]]E is the set:

{〈| x == 0 |〉, 〈| x == 1 |〉}

The process p is if x == 0 then b → Stop else Stop and the function C can
be explictly written as

C = {〈| x == 0 |〉 7→ (p,M ⊕ {x 7→ 0})
〈| x == 1 |〉 7→ (p,M ⊕ {x 7→ 1})}

The next rule that should be applied is

∃ t : F • C (t) a−→ c′

2F • C a−→ c′
[a ∈ ΣX]

For t = 〈| x == 0 |〉 this rule is only applicable if C (t) b−→ c′ holds.
However, the configuration C (t) is

(if x == 0 then b → Stop else Stop,M ⊕ {x 7→ 0})

and there is no rule for the if construct. Fischer assumes that this is
somehow simplified to b → Stop, since the value of x is 0 in the model.
However, this is never made explicit.

With our approach the if construct is evaluated by the Z semantics as
follows.

[[2 x : 0..1 • if x == 0 then b → Stop else Stop]]EM

= extchoice([[λ x : 0..1 • if x == 0 then b → Stop else Stop]]EM

= extchoice({0 7→ [[if x == 0 then b → Stop else Stop]]EM ⊕ {x 7→ 0},

1 7→ [[if x == 0 then b → Stop else Stop]]EM ⊕ {x 7→ 1}})

= extchoice({0 7→ prefix (b,Stop), 1 7→ Stop}) .

64 3. CSP-OZ-DC

3.4.2. Semantics of CSP-OZ-DC

The first semantics definition of CSP-OZ-DC was given in [HO02a] and
[HO02b] based on the failures-divergence semantics of CSP-OZ. It intro-
duces a state variables tr that records all communicated events. This
observable directly corresponds to the traces of the trace semantics T (P)
of the underlying CSP process P . Our new approach uses a separate state
variable for each event instead of the monolithic variable tr . Due to this
alphabetised parallel A‖B can be expressed much simpler by using con-
junction, provided A and B is the alphabet of the underlying processes.
In [HO02a], the trace variables of each individual process had to be re-
named. The renamed trace variables were then combined into a new trace
and hidden to the outside:

∃ tr1, tr2 • F1[tr1/tr] ∧ F2[tr2/tr]
∧ dtr ∈ seq(A ∪ B) ∧ tr �A = tr1 ∧ tr � B = tr2e

Another difference of the semantics in [HO02a] is the inclusion of the
acceptance set. Thus, it provides a richer semantics were deadlocks can
be observed. Via the enable predicate the DC part could even reference
the acceptance set. However, this extension has a problem because it is
not considered whether the DC part allows an event. For example, in the
DC formula ¬ 3(dPe ∧ ` > 1 a l e), the event e may not occur if state
P was observed for more than a second. Nonetheless this DC formula
does not modify the acceptance set. Hence, a deadlock cannot always be
detected. The acceptance semantics is only valid for the CSP-OZ part of a
class. For future work, it may be useful to consider a failure or acceptance
semantics using the operational semantics given in the next chapter, which
also considers the DC part.

In [HO02a] the semantics of CSP-OZ is reused which translates the Z part
into a CSP process, first. Unfortunately, this translation hides the state
space from the other parts of the specification, i. e., the DC part cannot
reference variables from the Z part. Our new semantics of the Z part is
based on its history semantics [Smi92], which provides both, communicated
events and state space. Since the CSP semantics of Object-Z was designed
by Fischer to be compatible with the history semantics, our new semantics
of CSP-OZ-DC is compatible to the one given in [HO02a].

3.4. Discussion and Related Work 65

3.4.3. Parallel Composition

The language CSP-OZ [Fis00] had a CSP semantics; this makes it easy to
create larger systems from several processes. CSP supports several par-
allel operators: full interleaving, synchronisation on common alphabet,
synchronisation on a given alphabet, linked parallel. Also other CSP op-
erators like renaming, hiding, etc. are available. We have only provided a
renaming and hiding operator for CSP-OZ-DC classes which corresponds
to CSP renaming and hiding. Furthermore, we defined a single parallel
operator ∧ (conjunction) which implements alphabetised parallel. How-
ever, we showed that all other parallel operators can be implemented with
renaming, hiding and conjunction.

3.4.4. Related Work

CSP-OZ-DC is not the only language that combines CSP, Z, and a real-
time formalism. A related language is Real-Time Object-Z (RTOZ) [SH99].
This language is based on Object-Z. It introduces a special variable τ , that
can be used in operations. Unlike operations in CSP-OZ-DC, operations
in RTOZ take time. The start time of an operation is given by τ , the end
time by the post state τ ′. Hence, the maximum execution time can be
specified by adding the formula τ ′ − τ < max to the schema.

Furthermore, formulae in an interval logic can be used to restrict the
timing behaviour. For example, the formula

〈δ ≥ 10〉 ⊆ 〈true〉 ; 〈SendData〉 ; 〈true〉

given in [Smi02] demands that in any interval of 10 time units the operation
SendData needs to be executed at least once. It is equivalent to the DC
formula

` ≥ 10 ⇒ true a SendData a true ,

and thus to the counterexample formula ¬ 3(` ≥ 10 ∧ �SendData). In
[Smi02] a CSP semantics for RTOZ is given. This allows Smith to define
semantics for parallel classes using CSP parallel operators.

In RTOZ the timing behaviour is not strictly separated from the logical
behaviour: it can be either given by restricting the values of τ and τ ′ in
the state schema, or by using the interval logic. In our logic the timing
behaviour is kept strictly separated. Moreover, the interval logic used in
RTOZ is designed from the scratch instead of using the well-researched

66 3. CSP-OZ-DC

language DC. No decidability results and no tool support exist for this lan-
guage. In [Smi02], CSP is used only to build larger systems from multiple
classes. It cannot be used to specify the order in which operations may be
invoked. For this, the interval logic has to be used, which is not suited for
this purpose.

A different approach is the combination of Timed CSP [DS95] and Z. The
languages TCOZ [MD98] and RT-Z [Süh02] follow this approach. Timed
CSP is similar to CSP but introduces a new operator timeout, denoted
by P . {d}Q . This process behaves like P if P performs a visible event
within d seconds. Otherwise, it waits for d time units and behaves as Q
afterwards. Thus, STOP . {d}Q waits for d time units and behaves as Q
afterwards. In the process a → P . {d}STOP either the event a occurs
within d time units or the system will end in a deadlock. It is not possible
to state that the event a must occur after d time units. To denote the
operational semantics of Timed CSP, there is a new kind of transition d

for the passage of time. Also the timing behaviour is closely integrated
into the CSP specification. In CSP-OZ-DC the timing behaviour is kept
in a separate part of the class.

The language RT-Z [Süh99, Süh02] is a combination of Timed CSP and
Z. It uses a different syntax but the components are similar to CSP-OZ-DC:
A specification unit has an interface declaring CSP channels of some type.
It has a behaviour that corresponds to the CSP part in CSP-OZ-DC. The
only difference is the usage of Timed CSP instead of CSPz. The state is
defined as Z schema, there is an init schema and some operation schemas.
A difference in RT-Z is that operation schemas can only be referenced
by the CSP process in the behaviour part. They cannot be part of the
exported interface as they are in CSP-OZ-DC.

TCOZ [MD98, MD99b, MD99a] is a combination of Timed CSP and
Object-Z. In this language, communication, data and time are not sep-
arated. Instead the syntax for CSP is extended by Z operations. A Z
operation is interpreted as a CSP process that changes the state space and
terminates.

67

4. Phase Event Automata

Contents
4.1. Prerequisites . 69

4.2. Syntax of Phase Event Automata 72

4.3. Operational Semantics 75

4.4. Automata and Formulae 81

4.5. Deterministic Automata 83

4.6. Case Study: Audio Control Protocol 86

4.7. Discussion and Related Work 90

4.7.1. Discussion . 90

4.7.2. Other Timed Automata Models 92

Fischer gives the semantics for CSP-OZ in CSPz, which has an opera-
tional semantics in form of a labelled transition system. The advantage of
this approach is the easy integration into the model checker FDR. There
is a simple transformation for a subset of CSPz (with finite domains) into
CSPm, the language of FDR. For CSPm the transition system semantics
can be computed using FDR. However, when adding real-time behaviour
a different model checker is needed, because FDR cannot handle real-time
issues.

For checking real-time systems, timed automata are commonly used as
modelling language. They were introduced by Alur and Dill [AD94]. A
timed automaton is a Büchi automaton extended with clock variables.
These variables can be used to measure time and force some action to
occur within certain time bounds.

Our first approach for model checking CSP-OZ-DC was the following.
First the CSP-OZ part of the specification is translated to CSPm. This is
used as input language for the FDR model checker. FDR can produce a fi-
nite automaton, provided that the CSP-OZ class only uses finite data types.
This automaton is interpreted as timed automaton that allows arbitrary
timing behaviour. In the last step the DC part is added to this automaton.
For each formula certain annotations are added to the automaton to assure
that the timing restrictions are met.

68 4. Phase Event Automata

The approach has several disadvantages. In the resulting automaton
there is no separation of the behavioural, data, and timing part, anymore.
They are intermixed into a single large automaton. It is not possible to
check several separated classes that run in parallel. This is because the
synchronisation in off-the-shelf timed automata model checker, e. g., Up-
paal, use a different type of synchronisation. Furthermore, in the finite
automaton FDR produces, the data part is not visible anymore. Therefore
it is not possible to use DC formulae that reference variables from the Z
part.

To build systems from several small automata, a parallel composition is
needed that matches the parallel operator of CSP-OZ-DC. In the model
of Alur and Dill the parallel components are synchronised over common
events. Each component has an alphabet and every event that occurs in
both alphabets must occur synchronously. This behaviour matches the
alphabetised parallel operator A‖B of CSP, which is used to synchronise
the CSP and the Z part of a specification. However, these automata do not
define variables that are necessary to model the Z part and to synchronise
the Z part with the Duration Calculus part.

To overcome these difficulties, a new automaton model is helpful. The
automata have to meet the following requirements. First, the synchroni-
sation of events has to match the CSP synchronisation over a common
alphabet. Second, the data variables should be visible. Last, the parallel
composition should be semantically equivalent to conjunction in Duration
Calculus. The first requirement is needed to build larger systems as sepa-
rate automata running in parallel. It is also needed to synchronise the CSP
and Z part with the semantics given in the previous chapter. The second
requirement is necessary to let the DC part reference variables from the Z
part. The last requirement makes it possible to translate the DC formu-
lae into separate automata that run in parallel and supervise the timing
behaviour.

In this chapter this new kind of automaton, called phase event automa-
ton, is presented. Phase event automata have a built-in notion of state
assertions and events. To support the real-time behaviour, the concepts of
clocks from the timed automata model [AD94] are used. An operational
semantics for the automaton model is given, which is a prerequisite to
develop a model checking algorithm.

Figure 4.1 gives an example for a phase event automaton. It models the
behaviour of a simple watchdog that observes a boolean variable danger . If
this variable is true, the watchdog must issue an event alarm after at most

4.1. Prerequisites 69

two seconds. If the variable danger is reset to false within two seconds, the
alarm does not have to occur.

The automaton has three locations each labelled with a state invariant
(in this case either danger or ¬ danger). As long as the automaton is
in a certain location, its state invariant has to hold. Transitions can be
labelled with guards. If the guard is omitted, the edge is always enabled.
The automaton has two initial locations p0 and p1. If the initial value
of the variable danger is false, it will start in p0 otherwise in p1. When
the variable danger changes from false to true, the automaton has to
leave location p0 and enter location p1. Taking this transition it resets the
clock variable c to zero. This clock variable now measures the time the
automaton stays in location p1. Due to the state invariant p1 cannot be
active for more than two seconds, so one of the outgoing transitions has
to be taken. The first edge allows to go back to p0 if the variable danger
is reset to false. The second edge forces the event alarm to occur and
switches to p2.

Each location needs a loop transition that can be taken if nothing rel-
evant to the automaton changes. This loop edge allows an automaton to
perform stuttering steps. Stuttering steps help to simplify the definition
of the parallel composition. In our parallel composition only synchronous
steps are allowed but automata that do not participate in this step can do
a stuttering step. This loop edge can also be labelled by events that must
not occur while the automaton is in a certain location. For example, the
location p1 must be left if the alarm event occurs because the loop edge
forbids this event.

4.1. Prerequisites

As shown in Figure 4.1, the nodes and edges of the automaton can be
labelled by formulae. For a set of variables V we denote with L(V) the
language of predicates referencing only variables in V . We assume that
the variables are declared as Z variables in a global context. The language
used for these constraints is a subset of the language of Z predicates. This
subset has to be chosen to meet two opposing constraints. On the one
hand, it must be expressive enough so that specifications with complex
data type can be translated. On the other hand, the subset should permit
automatic verification and model checking.

Like the metalanguage of Z we use mappings from a subset of variable

70 4. Phase Event Automata

p0

¬ danger

p1

danger
c ≤ 2

p2

danger
¬ alarm

c := 0

alarm

Figure 4.1.: Phase event automaton for a watchdog

names NAME to the universe of data value W. These mappings are called
valuations, as they give values to variable names. For a valuation β and
a formula g , we write β |= g to denote that g holds for the valuation β.
In terms of the Z metalanguage this is denoted by β ∈ [[g]]P , which states
that β is a model for the formula g . If we have multiple valuations β1, β2

for distinct sets of variables, we use the notation β1, β2 |= g to denote that
g holds for the combined valuation β1 ∪ β2.

To denote the change of the state, we use unprimed and primed variables
to denote the pre- and post-state of a transition, respectively. The same
mechanism is used for operations in Object-Z. If we have a valuation β for
a set of unprimed variables, we denote with β′ the valuation for primed
variables, where β′(v ′) = β(v) for each variable v in the domain of β.

For specifying real-time behaviour, we use the notion of clock variables,
clock constraints and clock valuation following Alur and Dill [AD94]: A
clock variable stores values of type Time, in our case continuous time
Time == R+. The value of clock variables automatically increases as
time passes. They can be explicitly reset to zero by taking transitions and
then are measuring the time passed since this transition.

The sublanguage L(C) for clock variables should allow the basic predi-
cates known from timed automata. The atoms are comparisons of a clock
variable against a rational number. These atoms may be joined by arbi-
trary boolean operators to build formulae.

For state invariants we require a different more restricted set of clock
constraints, named convex clock constraints. These only allow conjunction

4.1. Prerequisites 71

of atoms of the form c ≤ T , where c is a clock variable and T a rational
number. Convex clock constraints have the following useful property: if
they hold at a certain moment they also hold for all earlier moments unless
the clocks involved were reset.

Definition 4.1. For a set C of clock variables, the set L(C) of clock con-
straints δ is defined by the following grammar:

δ ::= c ≤ T | c < T | ¬ δ | δ ∧ δ

where c ∈ C is a clock and T ∈ Q+ (the positive rational numbers) is a
constant.

The set Lc(C) of convex clock constraints δc are defined by the following
grammar

δc ::= c ≤ T | c < T | δc ∧ δc

A clock valuation γ for a set C of clocks is a function γ : C → Time that
assigns to each clock a non-negative real value. For each t ∈ Time, γ + t
denotes the clock valuation where each clock is increased by t , i.e. (γ +
t)(c) = γ(c) + t . For a set X ⊆ C , γ[X := 0] denotes the clock valuation
where each clock in X is reset to zero while the values of the other clocks
remain unchanged.

If for the valuation γ the clock constraint δ holds, we say that γ satisfies
δ, denoted by γ |= δ.

When an automaton enters a location, we demand that it stays there for
some positive time. If the invariant forces it to leave the location immedi-
ately, there is a contradiction. Therefore, we only allow entering locations
if the invariant still holds after a short positive duration. To express this
condition we define an operator strict . This operator builds for a convex
clock constraints (the clock invariant) the corresponding strict constraint:
every ≤-operator is replaced by an <-operator. It can be defined induc-
tively as follows:

[C]
strict : Lc(C) → Lc(C)

∀ c : C ; T : Q+; δ1, δ2 : Lc(C) •
strict(c ≤ T) = (c < T)
∧ strict(c < T) = (c < T)
∧ strict(δ1 ∧ δ2) = (strict(δ1) ∧ strict(δ2))

72 4. Phase Event Automata

The following lemma proves some useful properties of convex clock con-
straints.

Lemma 4.2. If δ ∈ Lc(C) is a convex clock constraint then for all clock
valuations γ, all t > 0 and all t ′ ≥ 0 the following holds:

γ + t |= δ implies γ |= strict(δ) , (4.1)
γ |= strict(δ) implies γ |= δ , (4.2)

t ′ < t ∧ γ + t |= δ implies γ + t ′ |= strict(δ) . (4.3)

Proof. The first two formulae are easily shown by induction over the struc-
ture of δ. The last formula follows from (4.1):

γ + t ′ + (t − t ′) |= δ implies γ + t ′ |= strict(δ) .

2

4.2. Syntax of Phase Event Automata

In this section we give the definition and intuitive semantics for phase event
automata. We also define the mentioned parallel composition operator.

Definition 4.3. A phase event automaton A = (P ,V ,A,C ,E , s, I ,E0)
consists of the following components:

• P : a set of locations (phases).

• V ⊆ NAME : a set of typed state variables.

• A ⊆ NAME : a set of boolean event variables.

• C : a finite set of real-valued clocks.

• E ⊆ P ×L(V ∪A∪C ∪V ′)× P(C)×P : a set of edges. An element
(p, g ,X , p′) represents an edge from p to p′. The current valuation
of state and clock variables and events must satisfy the guard g . All
clocks in X are reset after the transition.

• s : P → L(V): a labelling function that associates each location with
a state invariant that must hold while this location is active.

4.2. Syntax of Phase Event Automata 73

• I : P → Lc(Clocks): a function assigning to each location a clock
invariant.

• E0 ⊆ L(V) × P : a set of initial edges. An element (g , p) allows the
automaton to start in p if the state predicate g holds.

Intuitively, the automaton starts by taking an initial edge (g , p) ∈ E0.
Both formulae g and s(p) hold for the initial values of the variables. All
clocks are initially set to zero and are then accumulating the time that
passed since they were last reset. Whenever a variable changes or an event
occurs, the automaton has to take some edge (p, g ,X , p′) ∈ E from the
current location p. The guard g must hold for the current valuation of
the clocks, the previous and the new values of the state variables, and for
the events that occur. Furthermore, the state and clock variables satisfy
the invariants of the new location s(p′) and strict(I (p′)). The automaton
switches to the new location p′ and resets all clocks in X to zero. Each
edge is taken instantaneously; however, after taking an edge there must be
some delay before taking the next edge. This is necessary because there
is no super-step semantics in Duration Calculus. During this non-zero
delay the new location is active and the clocks are increased accordingly.
Of course, the delay has to ensure that the clock invariant I (p) remains
satisfied. Since the clock invariant holds strictly when entering a location,
there is always a non-zero delay that keeps the invariant satisfied.

It is convenient to let the automaton do steps at any time without chang-
ing the current location if the valuations of the state variables do not change
and no event that is relevant for this automaton occurs. Lamport calls this
behaviour stuttering [Lam83], because nothing relevant for this automaton
changes. These stuttering steps are useful when running several automata
in parallel. Parallel automata should be able to do steps either indepen-
dently or synchronously, which complicates the definition of parallel com-
position. However, if every automaton is stuttering invariant, i. e., it can
make a stuttering step at any time, parallel composition can be defined
with synchronous steps only.

Therefore all automata should be stuttering invariant in the following
sense: Every location has a loop edge, whose guard is satisfied if no global
variable in V changes, no event in A occurs, and the invariant of the
location is satisfied. If the location has a clock invariant, the guard of the
loop edge only needs to hold if the clock invariant is strictly satisfied.

74 4. Phase Event Automata

Definition 4.4. An automaton A is stuttering invariant, if for each location
p ∈ P there is an stuttering edge (p, g , ∅, p) ∈ E , with

(∀ x : V • x = x ′) ∧ (∀ e : A • ¬ e) ∧ s(p) ∧ strict(I (p)) ⇒ g .

For parallel composition of automata we can assume that all automata
run synchronously. All automata that are not interested in a computation
step do a stuttering step. The automata synchronise over both events and
global variables. A global variable may only be changed if all automata
agree or do not care about that variable. Likewise an event may only occur
if all automata allow it. For two parallel automata the product automaton
can be constructed as follows.

Definition 4.5. The parallel composition of two automata A1 and A2, Ai =
(Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,E0,i), is the product automaton

A = (P ,V ,A,C ,E , s, I ,E0)

defined as follows:

• P := {p1 : P1; p2 : P2 | s(p1) ∧ s(p2) 6⇔ false • (p1, p2)}. The set of
locations P is the cross product of P1, P2 where the locations having
a combined state invariant equivalent to false are removed.

• V := V1 ∪V2 and A := A1 ∪A2.

• C := C1 ∪̇C2. The clock set is the disjoint union of C1 and C2; clocks
that appear in both sets need to be renamed.

• The edges E are the tuples ((p1, p2), g1 ∧ g2,X1 ∪ X2, (p′1, p
′
2)) for

each pair of edges (pi , gi ,Xi , p′i) ∈ Ei , i = 1, 2. Edges with g1 ∧ g2

equivalent to false can be removed.

• s(p1, p2) = s1(p1) ∧ s2(p2) The state invariant for a location of A is
the conjunction of the state invariants of the corresponding locations
of A1 and A2.

• I (p1, p2) = I1(p1) ∧ I2(p2) Likewise the clock invariant is the con-
junction of the corresponding clock invariants of A1 and A2.

• The set of initial edges E0 consists of tuples (g1 ∧ g2, (p1, p2)) for
each pair of initial edges (gi , pi) ∈ E0,i .

4.3. Operational Semantics 75

When abstracting from the names of the locations P , the product au-
tomatonA1‖A2 is equivalent toA2‖A1 because the above definition is sym-
metric. Likewise the parallel composition is associative, i. e., (A1‖A2)‖A3

is equivalent to A1‖(A2‖A3). Moreover, stuttering invariance is preserved
under parallel composition:

Lemma 4.6. The parallel product A1‖A2 of two stuttering invariant au-
tomata A1,A2 is also stuttering invariant.

Proof. For each location (p1, p2) ∈ P there are edges (pi , gi , ∅, pi) ∈ Ei for
i = 1, 2 with

(∀ x : Vi • x = x ′) ∧ (∀ e : Ai • ¬ e) ∧ s(pi) ∧ strict(I (pi)) ⇒ gi

Therefore A1‖A2 contains the stuttering edge ((p1, p2), g1 ∧ g2, ∅, (p1, p2))
and

(∀ x : V • x = x ′) ∧ (∀ e : A • ¬ e) ∧ s(p1, p2) ∧ strict(I (p1,p2))
⇒ g1 ∧ g2 .

This proves that A1‖A2 is stuttering invariant. 2

4.3. Operational Semantics

The operational semantics is defined in terms of runs, which are sequences
of configurations. A configuration describes the state of the automaton and
its environment, i. e., values of clocks, variables, events, and the current
location. The configurations of an automaton A = (P ,V ,A,C ,E , s, I ,E0)
are formally defined as

PEAConfig = P × P A×Val(V)×Val(C)× Time .

A configuration (p,Y , β, γ, t) ∈ PEAConfig describes an interval of dura-
tion t where the automaton is in location p, Y is the set of events occurring
at the beginning of the interval, the valuations of the variables in V are
given by β and the valuations of the clocks at the beginning of the interval
are given by γ. No events occur during the interval.

Definition 4.7. A run is a finite sequence of configurations

〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn)〉 ∈ seqPEAConfig

that satisfies the following conditions:

76 4. Phase Event Automata

1. Y1 = ∅,

2. β1 |= g for some initial edge (g , p1) ∈ E0,

3. γ1(c) = 0 for all c ∈ C ,

4. ti > 0 for all i ∈ 1..n,

5. βi |= s(pi) for all i ∈ 1..n,

6. γi + ti |= I (pi) for all i ∈ 1..n,

7. For all i ∈ 1..(n − 1) there is an edge (pi , g ,X , pi+1) with

βi , β
′
i+1, γi + ti ,Yi+1 |= g and γi+1 = (γi + ti)[X := 0] .

We require Y1 = ∅ because our definition of l e in section 2.3.5 does
not allow an event to occur at time zero. Furthermore, we require ti > 0
for all i , i. e., the automaton stays in each location for some non-zero
time. Because the invariant needs to hold at the end of the interval, it
must hold strictly at the beginning of the interval by lemma 4.2, i. e.,
γi |= strict(I (pi)).

The set of runs of a parallel product is the intersection of the set of runs
of the component automata. This allows compositional reasoning. If the
runs of one component satisfy a safety property, the runs of the complete
system also do.

Lemma 4.8. A run = 〈((p1,1, p1,2),Y1, β1, γ1, t1), . . . 〉 is a run of A1‖A2

if and only if each of its projections

runj = 〈(p1,j ,Aj ∩Y1,Vj C β1,Cj C γ1, t1), . . . 〉)

is a run of Aj for j = 1 and j = 2.

Proof. Let Aj = (Pj ,Vj ,Aj ,Cj ,Ej , sj ,E0,j) and

A1‖A2 = (P ,V ,A,C ,E , s, I ,E0) .

First we show that runj is a run of Aj for j = 1, 2 if run is a run of
A1‖A2. We check the seven conditions of definition 4.7 for the projections
runj . From Y1 = ∅, we get Aj ∩ Y1 = ∅ for j = 1, 2. In A1‖A2, we
have β0 |= g for some initial edge (g , (p0,1, p0,2)) ∈ E0. From the definition
of parallel composition follows that g = g1 ∧ g2 with (gj , p0,j) ∈ E0,j for

4.3. Operational Semantics 77

j = 1, 2. Then, β0 |= gj for j = 1, 2 and since gj can only reference
variables from Vj , also (Vj C β0) |= gj . From γ1(c) = 0 for all c ∈ C ,
we have Cj C γ1(c) = γ1(c) = 0 for all c ∈ Cj . Also ti > 0 for all
i ∈ 1..n, since run was a valid run. The state invariants of the locations in
A1‖A2 hold, so we have βi |= s(pi,1, pi,2) = s(pi,1) ∧ s(pi,2) and therefore
(Vj C βi) |= s(pi,j) for j = 1, 2. Similarly, for the clock invariants.

For all i ∈ 1..(n − 1) there is an edge ((pi,1, pi,2), g ,X , (pi+1,1, pi+1,2)) ∈
E . By definition of E we have edges (pi,j , gj ,Xj , pi+1,j) ∈ Ej for j = 1, 2
and g = g1 ∧ g2, X = X1 ∪ X2. Because Xj ⊆ Cj and C1 and C2 are
disjoint we have Xj = X ∩ Cj . From βi , β

′
i+1, γi + ti ,Yi+1 |= g = g1 ∧ g2

we have that Vj C βi , (Vj C βi+1)′,Cj C γi + ti ,Aj ∩ Yi+1 |= gj . Also
Cj C γi+1 = Cj C ((γi + ti)[X := 0]) = ((Cj C γi) + ti)[X ∩ Cj := 0] =
((Cj C γi) + ti)[Xj := 0]. Therefore runj is a run of Aj for j = 1, 2.

Now suppose runj is a run of Aj for j = 1, 2. From Aj ∩ Y1 = ∅ for
j = 1, 2, we have Y1 = ∅. There are two initial edges (gj , p1,j) ∈ E0 with
Vj C β |= gj . Therefore β |= g1 ∧ g2 and (g1 ∧ g2, (p1,1, p1,2)) is an initial
edge of A1‖A2. From Cj C γ1(c) = 0 for all c ∈ Cj , j = 1, 2 we have
γ1(c) = 0 for all c ∈ C = C1 ∪ C2. From Vj C βi |= s(pi,j) we can deduce
βi |= s(pi,1) ∧ s(pi,2) = s((pi,1, pi,2)). Similarly, for the clock invariant
I ((pi,1, pi,2)). For all i ∈ 1..n − 1 there are two edge (pi,j , gj ,Xj , pi+1,j) ∈
Ej for j = 1, 2 with

Vj C βi ,Vj C β′i+1, (Cj C γi) + ti ,Aj ∩Yi |= gj
and Cj C γi+1 = ((Cj C γi) + ti)[Xj := 0] .

So there is an edge ((pi,1, pi,2), g1 ∧ g2,X1∪X2, (pi+1,1, pi+1,2)) ∈ E . Since
C1 and C2 are disjunct, we have γi + ti = ((C1C γi)+ ti)∪ ((C2C γi)+ ti)
and γi +ti [X1∪X2 := 0] = ((C1Cγi)+ti)[X1 := 0]∪((C2Cγi)+ti)[X2 := 0].
Hence,

βi , β
′
i+1, γi + ti ,Yi |= g1 ∧ g2 and γi+1 = (γi + ti)[X1 ∪X2 := 0] .

2

If we have two runs run1 and run2 of different automata that are sup-
posed to run in parallel, it is useful to insert “stuttering” steps into each run
until the steps are synchronous. The following lemma shows that inserting
stuttering steps is possible.

Definition 4.9. A run run ′ is a stuttering extension of run if it emerges
from run by inserting a finite number of stuttering steps, i. e., replacing a

78 4. Phase Event Automata

step (pi ,Yi , βi , γi , ti) by two steps (pi ,Yi , βi , γi , t), (pi , ∅, βi , γi + t , ti − t),
for some t with 0 < t < ti .

Lemma 4.10. If A is a stuttering invariant automaton and run ′ a stut-
tering extension of run, then run is a run of A if and only if run ′ is a run
of A.

Proof. If run ′ is a run of A, deleting a stuttering step from run ′ pro-
duces another run of A. Deleting a stuttering step means replacing two
configurations (p,Y , β, γ, t1), (p, ∅, β, γ + t1, t2) by a single configuration
(p,Y , β, γ, t1 + t2). The new run has only fewer conditions in definition 4.7
that have to hold. By deleting a finite number of stuttering steps we arrive
at run, so this is also a run of A.

For the other direction we need to show that inserting one stuttering
step into run produces a new run of A. So assume that run ′ is derived
from run by inserting a single stuttering step:

run ′ = 〈. . . , (pi ,Yi , βi , γi , t), (pi , ∅, βi , γi + t , ti − t), . . . , 〉 with 0 < t < ti

Almost all conditions for run ′ of definition 4.7 are the same as those for
run, because γi + t + (ti − t) = γi + ti . Only the following new conditions
need to be shown:

t > 0 and ti − t > 0 (4.4)
γi + t |= I (p) (4.5)

βi , β
′
i , γi + t , ∅ |= g and γi + t = (γi + t)[X := 0]

for some edge (pi , g ,X , pi) ∈ E
(4.6)

From 0 < t < ti , (4.4) follows immediately. Formula (4.5) follows from
γi + ti |= I (p) and lemma 4.2. In fact the lemma gives us even γi + t |=
strict(I (p)).

Finally, we need to show that there is some edge (pi , g ,X , pi) ∈ E satis-
fying (4.6). From βi |= s(pi) and γi +t |= strict(I (pi)), we can deduce that
for the stuttering edge (pi , g , ∅, pi) the last condition βi , β

′
i , γi + t , ∅ |= g

holds. 2

To compare phase event automaton with Duration Calculus formulae,
we can relate runs with DC interpretations.

4.3. Operational Semantics 79

Definition 4.11. A run

〈(p1,Y1, β1, γ1, t1), . . . (pn ,Yn , βn , γn , tn)〉

matches an interpretation I, if and only if:

1. I(v)(t) = βi(v) for v ∈ V , i ∈ 1..n, and almost all t ∈ Inti ,

2. I(e)(t) = I(e)(t ′) for e ∈ A, i ∈ 1..n, and almost all t , t ′ ∈ Inti

3. I(e)(t) = (if e ∈ Yi then ¬ I(e)(t ′) else I(e)(t ′)) for all e ∈ A,
i ∈ 2..n, and almost all t ′ ∈ Inti−1, t ∈ Inti .

Here Inti := [
∑i−1

j=1 tj ,
∑i

j=1 tj] denotes the interval corresponding to the
i -th entry of the run.

The first condition asserts that I and βi coincide for all observables v
and almost all points t in the time interval to which βi belongs. The second
condition asserts, that an observable associated with an event e does not
change during some time interval; its valuation may only change between
two intervals and it must do so according to the third condition, i. e., it
may only change if and only if it is in the corresponding event set Yi+1.

Lemma 4.12. For any run of an automaton A there is an interpretation
I such that the run matches I.

Proof. Given a run run = 〈(p1,Y1, β1, γ1, t1), . . . 〉 define I(v)(t) = βi for
all t ∈ [

∑i−1
j=1 tj ,

∑i
j=1 tj [. Furthermore, define I(e)(t) = false for t ∈

[0, t1[and I(e)(t) = if e ∈ Yi then ¬ I(e)(
∑i−1

j=1 tj) else I(e)(
∑i−1

j=1 tj) for
t ∈ [

∑i
j=1 tj ,

∑i+1
j=1 tj [. This defines I for every v ∈ V and e ∈ A and every

t ∈ [0,
∑#r

j=1 tj [. It is easy to see that all conditions of definition 4.11 are

satisfied. The value of I for t >
∑#r

j=1 tj can be defined arbitrarily. 2

However, for some interpretation I there is not always a matching run
of A. We can define the accepted language of an automaton as the set of
interpretations that have a matching run.

Definition 4.13. An automaton A accepts an interpretation I for duration
T (I, [0,T] |= A), if there is a run of A,

run = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn)〉 ,

80 4. Phase Event Automata

with duration T =
∑n

i=0 tn and I matches run. An automaton accepts I
completely, if there is an infinite sequence

run∞ = 〈(p1,Y1, β1, γ1, t1), . . . 〉

that is non-Zeno, i. e.,
∑∞

i=0 tn = ∞, such that each finite prefix of run∞
matches I and is a run of A.

The following lemma relates parallel composition of phase event au-
tomata to conjunction in Duration Calculus. This is an important property
of phase event automata. It allows to translate the DC formulae of a CSP-
OZ-DC specification separately into phase event automata and combine
the automata by parallel composition. The lemma states that the paral-
lel product of two automata accepts an interpretation if and only if both
automata accept the interpretation.

Lemma 4.14. The product automaton A1‖A2 of two stuttering invariant
automata A1 and A2 accepts an interpretation I for duration T if and only
if each component Ai accepts I for duration T:

I, [0,T] |= A1‖A2 iff I, [0,T] |= A1 and I, [0,T] |= A2

Proof. If A1‖A2 accepts I for duration T , there is a run

run = 〈((p1,1, p1,2),Y1, β1, γ1, t1), . . . 〉

of A1‖A2 with duration T that matches I. By lemma 4.8, the projection
〈(p1,j ,Aj ∩Y1,Vj Cβ1,Cj Cγ1, t1), . . . 〉 is a run of Aj (j = 1, 2). Obviously,
I also matches these projections.

For the other direction assume I matches run1 of A1 and run2 of A2,
both of duration T . Without loss of generality one can assume that the
phase durations ti in both runs are identical: Otherwise, one can insert
stuttering steps into both runs until this is the case. So we have:

run1 = 〈(p(1)
1 ,Y (1)

1 , β
(1)
1 , γ

(1)
1 , t1), . . . 〉

run2 = 〈(p(2)
1 ,Y (2)

1 , β
(2)
1 , γ

(2)
1 , t1), . . . 〉

Since I matches both runs, the state valuations β
(j)
i and the event sets

Y (j)
i coincide on their common variables. So the valuation βi = β

(1)
i ∪β

(2)
i

is well defined and Vj C βi = β
(j)
i . Likewise for Yi = Y (1)

i ∪ Y (2)
i we

4.4. Automata and Formulae 81

have Y (j)
i = Aj ∩ Yi . Since the clock variables of A1 and A2 are disjoint,

γi = γ
(1)
i ∪ γ

(2)
i is also well defined. By lemma 4.8

run = 〈((p(1)
1 , p(2)

1),Y1, β1, γ1, t1), . . . 〉

is a run of A1‖A2 of duration T and I matches run. So I, [0,T] |= A1‖A2

2

The last lemma has some important consequences. For example, if for
some component of a large system all accepted interpretations satisfy a
formula F , the interpretations of the complete system also satisfy the for-
mula F . Thus, for a large system it suffices showing that some component
ensures a property. This property will hold for the complete system.

4.4. Automata and Formulae

A phase event automaton can be used to implement a Duration Calculus
formula. The semantics of a formula is given by the set of interpretations
for which it holds. Likewise an automaton A is related to the set of in-
terpretations I which it accepts (I |= A). If these sets of interpretations
coincide then A implements the formula.

Definition 4.15. A phase event automaton A implements a Duration Cal-
culus formula F (denoted by A =̂ F), if for all interpretations I the fol-
lowing equivalence holds:

I |= A ⇔ I |= F .

Example 4.16. The following watchdog automaton Aw (c. f. figure 4.1)

p0

¬ danger

p1

danger
c ≤ 2

p2

danger
¬ alarm

c := 0

alarm

82 4. Phase Event Automata

implements the formula

Fw = ¬ (((true a d¬ dangere) ∨ ` = 0) a ddangere ∧ � alarm ∧ ` > 2)

Proof. Assume that I, [0, t] |= ¬ Fw for some t . Then there is a t1 such
that t1 = 0 or I, [0, t1] |= (true a d¬ dangere) and I, [t1, t] |= ddangere ∧
� alarm ∧ ` > 2. If t1 = 0 then Aw will start in p1 (the only initial
location with state invariant danger) with clock c = 0. If I, [0, t1] |=
true a d¬ dangere holds, the automaton will switch at time t1 to location
p1 and reset c to zero. It cannot leave location p1 as ddangere ∧ � alarm
holds. On the other hand, the clock invariant forbids to stay there for
t − t1 > 2. Hence, the automaton does not accept I. Thus, I 6|= Fw

implies I 6|= Aw .
Now, assume I 6|= Aw . This can only happen if location p1 is active,

c = 2, danger holds and alarm does not occur because in any other case
there is a successor location that can be entered. Let t denote the current
time and t1 denote the time when location p1 was entered. Since c is reset
when entering p1, this location was active for exactly two time units. We
therefore have I, [t1, t] |= ddangere ∧ � alarm ∧ ` = 2. By assumption,
p1 cannot be left. Hence, there is some ε > 0 such that I, [t1, t + ε] |=
ddangere ∧ � alarm ∧ ` > 2. Location p1 has only one incoming transition.
Thus, either the automaton took the transition from location p0 to p1 at
the moment t1, or it started in p1 and t1 = 0. Therefore, I, [0, t1] |= (true a

d¬ dangere) ∨ ` = 0. Hence in both cases, I, [0, t + ε] |= ¬ Fw . Thus,
I 6|= Aw implies I 6|= Fw .

Thus, the automaton Aw implements Fw . 2

If automata A1,A2 implementing formulae F1,F2 are given, the au-
tomata implementing F1 ∧ F2 and F1 ∨ F2 can be constructed. For
conjunction the parallel composition of automata is used. For F1 ∨ F2 the
following construction is used:

Definition 4.17. The disjunction A1 ∪ A2 of two automata A1 and A2,
Ai = (Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,E0,i) is the automaton

A = (P ,V ,A,C ,E , s, I ,E0)

defined as follows:

• P := P1 ∪̇ P2. The locations are the disjoint union of P1 and P2;
locations that appear in both automata need to be renamed.

4.5. Deterministic Automata 83

• V := V1 ∪V2 and A := A1 ∪A2.

• C := C1 ∪̇ C2.

• E := E1 ∪ E2 and E0 := E0,1 ∪ E0,2.

• s := s1 ∪ s2 and I := I1 ∪ I2.

Theorem 4.18. Let A1 and A2 be phase event automata and F1, F2 Dura-
tion Calculus formulae. If A1 =̂ F1 and A2 =̂ F2 then A1 ∪A2 =̂ F1 ∨ F2

Proof. Let I be some interpretation with I |= F1 ∨ F2. Then either
I |= F1 or I |= F2 hold. If I |= F1 then A1 |= I. Hence, there is a run run
of A1 that matches I. Since A contains all locations, edges and clocks of
A1, run is also a run of A, hence A |= I. Analogously, if I |= F2.

Now assume that I |= A. Hence, there is a run run starting in some lo-
cation p0. This location belongs to one of the automata A1 or A2. Assume
it belongs to A1. Since the locations of the two automata are disjoint all
edges that are taken and all locations in run belong to A1. Hence, run is
a run of A1. Analogously, run is a run of A2 if p0 belongs to A2. Thus,
either I |= A1 or I |= A2. From A1 =̂ F1 and A2 =̂ F2 we get I |= F1 or
I |= F2 hence I |= F1 ∨ F2. 2

Theorem 4.19. Let A1 and A2 be phase event automata and F1, F2 Dura-
tion Calculus formulae. If A1 =̂ F1 and A2 =̂ F2 then A1‖A2 =̂ F1 ∧ F2

Proof. Let I be some interpretation with I |= F1 ∧ F2. Then I satisfies
F1 and F2. With A1 =̂ F1 we get I |= A1. Analogously, I |= A2. With
lemma 4.14 hence I |= A1‖A2.

Now assume I |= A1‖A2. With lemma 4.14 we get I |= A1 and I |= A2.
Since A1 =̂ F1,A2 =̂ F2, I |= F1 and I |= F2. Hence, I |= F1 ∧ F2. 2

4.5. Deterministic Automata

An automaton is deterministic if for every possible behaviour of the envi-
ronment the automaton has exactly one run modulo insertion and deletion
of stuttering steps. Such an automaton accepts every interpretation for
any duration. Nonetheless it will be useful for the power set construction
in section 5.3, which builds a deterministic automaton from a Duration
Calculus formula. By removing certain states, it can be transformed into
an automaton that accepts exactly those interpretations that satisfy the

84 4. Phase Event Automata

formula. A deterministic automaton can be characterised by the following
definition.

Definition 4.20. A stuttering invariant automaton

A = (P ,V ,A,C ,E , s, I ,E0)

is deterministic if and only if

1. for each valuation β ∈ Val(V) there is exactly one initial edge
(g , p) ∈ E0 such that β |= s(p) and β |= g ,

2. for each location p : P and each pair of valuations β1, β2 ∈ Val(V),
Y ∈ P A, γ ∈ Val(C) there is exactly one edge (p, g ,X , p′) ∈ E such
that β1, β

′
2,Y , γ |= g , β2 |= s(p′) and γ[X := 0] |= strict(I (p′)),

3. each clock invariant I (p) does not contain any strict inequality. Only
conjunctions of c ≤ t , where c ∈ C and t ∈ Q, are allowed.

The first requirement assures that there is only one initial location for
a given valuation. The second requirement assures that for each location
p and each pair of valuations there is exactly one transition that can be
taken. A transition can only be taken if γ[X := 0] |= strict(I (p′)) because
the new location needs to be active for a non-zero time. The third condition
is necessary to assure that a location is left at a well-defined time if no
variable changes and no event occcurs. Suppose the clock invariant I (p)
of a location p contains a strict inequality c < t . As long as no event
occurs, no variable changes, and the invariant I (p) holds, the state cannot
be left because the stuttering edge is the only outgoing edge. However, the
clock invariant also forbids staying in this state forever. Hence, there is a
deadlock and the automaton does not accept the interpretation. However,
if the inequalities in the invariant have the form c ≤ t , the location can
be left when γ(c) = t . The stuttering edge is not enabled because γ 6|=
strict(I (p)).

Lemma 4.21. Let A be a deterministic and stuttering invariant automaton.
For any interpretation there is an infinite non-Zeno sequence, such that
each prefix is a run of the automaton matching this interpretation. Thus, A
accepts each interpretation I completely. Furthermore, all other sequences
with this property can be derived by inserting or deleting stuttering steps.

4.5. Deterministic Automata 85

Proof. First, we show that the sequence is unique.
Assume that there are two different sequences run1, run2 of A that both

match I. Furthermore, assume that in both runs all stuttering steps are
removed. Let i be the number of the first configuration where run1 and
run2 differ:

run1 = 〈(p1,Y1, β1, γ1, t1), . . . , (p
(1)
i ,Y (1)

i , β
(1)
i , γ

(1)
i , t (1)

i), . . . 〉

run2 = 〈(p1,Y1, β1, γ1, t1), . . . , (p
(2)
i ,Y (2)

i , β
(2)
i , γ

(2)
i , t (2)

i), . . . 〉

Without loss of generality assume that t (1)
i ≤ t (2)

i . Since both runs
match I, we have β

(1)
i (v) = I(v)(t) = β

(2)
i (v) for all v ∈ V and almost all

t ∈]
∑i−1

j=1 tj ,
∑i−1

j=1 tj +t (1)
i [, so β

(1)
i = β

(2)
i =: βi . Similarly, Y (1)

i = Y (2)
i =:

Yi . Because A is deterministic there is only one edge (pi−1, g ,X , pi) ∈ E
such that βi−1, β

′
i ,Yi , γi−1 + ti−1 |= g , βi |= s(pi) and γ[X := 0] |=

strict(I (pi)). Hence, p(1)
i = pi = p(2)

i and γ
(1)
i = (γi−1 + ti−1)[X := 0] =

γ
(2)
i =: γi . Thus, the difference between run1 and run2 is in the duration

t (1)
i < t (2)

i . This leads to a contradiction, though:
Because the invariant I (pi) holds at γi + t (2)

i it must hold strictly at γi +
t (1)
i . Furthermore, since the interpretation I does not change at

∑
tj + t (1)

i

we have β
(1)
i+1 = βi and Y (1)

i+1 = ∅. The stuttering edge of A is enabled.
Since A is deterministic, the stuttering edge is the only enabled edge.
Thus, p(1)

i+1 = pi , although we assumed that all stuttering steps in run1

were removed. This is a contradiction. Thus, run1 and run2 are equal.
Now, we create the infinite sequence for I.
Due to finite variability there is some ε > 0 such that for all v ∈ V

the interpretation I(v)(t) is constant for all t ∈]0, ε[. The constant value
can be expressed as limt↘0 I(v)(t). Choose β1(v) = limt↘0 I(v)(t) for
all v ∈ V and Y1 = ∅. There is one initial edge (g , p1) ∈ E0 such that
β1 |= s(p1) and β1 |= g . Set γ1(c) = 0 for all c ∈ C . Furthermore, choose

t1 = sup{t : Time | γ1 + t |= I (p1) ∧ I almost constant on [0, t]}) .

Because I (p1) contains no strict inequalities, γ1 + t1 |= I (p1) holds. Hence,
run1 := 〈(p1, ∅, β1, γ1, t1)〉 is a run of duration t1 for I.

If there is a run runn−1 of length n − 1 and duration Tn−1 :=
∑n−1

j=1 tj
that matches I, then a run of length n can be constructed as follows:
Let βn(v) = limt↘Tn−1 I(v)(t) the valuation of the state variables after

86 4. Phase Event Automata

time Tn−1 and Yn := {e | limt↘Tn−1 I(e)(t) 6= limt↗Tn−1 I(e)(t)} the
set of events occurring at Tn−1. For pn−1, βn−1, γn−1, tn−1, βn ,Yn there
is exactly one edge (pn−1, g ,X , pn) ∈ E such that βn−1, β

′
n ,Yn , γn−1 +

tn−1 |= g , β′n |= s(pn) and (γn−1 + tn−1)[X := 0] |= strict(I (pn)). Set
γn = (γn−1 + tn−1)[X := 0] and choose

tn = sup{t : Time | γn + t |= I (pn) ∧ I almost constant on [Tn−1, t]}) .

Since γn |= strict(I (pn)) and due to the finite variability of I we have
tn > 0. Also γn + tn |= I (pn) because I (pn) contains no strict inequalities.
Therefore, runn := runn−1

a 〈(pn ,Yn , βn , γn , tn〉 is a run of length n that
matches I.

What remains to be shown is that this leads to a non-Zeno infinite se-
quence. We need to show that for each T we get a run of duration t > T
by the preceeding algorithm. Assume, this is not the case and

∑n
j=1 tj < T

for all n. Since all tj are positive and the sum is bounded it has a limit
T ′ :=

∑∞
j=1 tj . Due to the finite variability of I the interpretation is con-

stant on some interval]T ′ − ε,T ′[for some ε > 0. There is some n0 such
that

∑n0
j=1 tj > T ′ − ε. So for all n > n0 we have βn = βn0 , Yn = ∅ and

tn = sup{t : Time | γn +t |= I (pn)}. The latter means that γn(ci)+tn = δi
for some constraint ci ≤ δi in I (pn). We call this constraint responsible
for tn . There are only finitely many constraints ci ≤ δi in the automa-
ton. Each of these constraint can be responsible for at most ε/δi different
tn because the clock ci needs to be reset and run for at least δi before
the constraint is responsible again. However, there are infinitely many tn .
This is a contradiction, so the assumption

∑∞
j=1 tj < T was wrong and for

every T there is an n such that
∑

i = 0tn > T . Thus, the infinite run is
non-Zeno. 2

4.6. Case Study: Audio Control Protocol

Modern hi-fi systems consist of several components connected by a simple
control bus. The purpose of this bus is to build a tiny local network. This
way the customer can operate the system with a single remote control and
can wake-up all components with a single button press.

This tiny network uses a simple protocol, so that almost no additional
costs arise when building the hardware. Philips used a bus consisting of a
single wire. On this wire a Manchester encoding is used to transmit data,
cf. figure 4.2. Every bit is encoded in a bit slot of equal length. For a one

4.6. Case Study: Audio Control Protocol 87

1 0 1 1 0 0 1 0 0

Figure 4.2.: Manchester coding of ‘101100100’

bit the wire is kept low on the first half and high on the second half and
for a zero bit it is the other way round.

One problem in deciphering the encoding is that for hardware reasons
the receiver can only sense the rising edges. These edges are marked with
an arrow in the diagram. Another problem is that the timing of sender
and receiver can vary by up to 5 % because of cheap hardware. It was
shown in [BPV94] and [BGK+96] that despite these problems the protocol
is correct.

Two different codes are separated by keeping the wire low for a certain
time (the so called radio silence). It is 8ms in the original specification but
we can shorten it to a single bit slot. Since it is impossible for the receiver
to distinguish if a code starts with zero or one, the audio protocol specifies
that it must always start with a one. Likewise it is not possible to detect
a final zero that follows a one bit as there is no rising edge. The audio
protocol specifies that every string must either end in two zeros, which can
be detected, or have odd length. However, here we use a much simpler
condition, stating that every packet must end with a zero bit. There is
a simple bijective mapping between the original codes and the simplified
ones.

An implementation of this protocol in the form of two parallel phase
event automata is given in figure 4.3. There is one state variable wire
representing the state of the wire. It can have the value high or low.
The sender and receiver automata synchronise on this state variable. Each
location has a state invariant restricting wire to a single value. In the figure
the invariant wire = high is encoded by a square node, and wire = low by
a round node. The stuttering edges are removed in this diagram for sake of
readability. Each location of the sender automaton has a stuttering edge
labelled with ¬ s.0 ∧ ¬ s.1 ∧ ¬ s.stop. Thus, it forbids all send events.
Likewise, the stuttering edge of each location of the receiver automaton
forbids all receive events. All time constants are in multiples of Q , which

88 4. Phase Event Automata

is a nominal duration of quarter of a bit slot. To represent the timing
uncertainty we introduce the constants Ql := Q(1− δ) and Qh := Q(1+ δ)
where δ > 0 is the maximum timing drift. So Ql is the minimum duration
and Qh the maximum duration of a quarter of a bit slot if the sender’s
clock drift is bound by δ.

The sender automaton consists of six locations. Location 1 is the idle
location, where it waits for the environment to send a message. The mes-
sage is sent via the channel s that has three events: s.1 to send a one bit,
s.0 to send a zero bit and s.stop to mark the end of the message. Because
the message must start with a one bit only s.1 is allowed from the idle
location.

Locations 4 and 5 send a one bit on the wire. As depicted in figure 4.2
a one bit is sent by keeping the wire low for half a slot and high for the
second half. The time is measured by the guard 2Ql < x < 2Qh . In
location 5 the sender checks the next bit to send. The events s.0 or s.1
have to be sent by the environment at the right time. The automaton will
then change to 4 to send another one bit or to location 2 to send a zero
bit.

Locations 2 and 3 are constructed analogously to the locations 4 and 5.
The main difference is that after a zero bit the message can be terminated
by a s.stop event. In that case, location 6 is entered which will wait for
the duration of a bit slot, so that the receiver can detect the end of the
message, and then switch to the idle location again.

The receiver automaton is shown on the bottom of figure 4.3. It starts
in location a which is also the idle location where no message is sent. This
location is kept as long as the wire is low. When the first rising edge is
detected the automaton must change to location b. The transition triggers
an r .1 event that communicates to the environment that a one bit marking
the start of the message was received. Also the clock y is reset. It measures
the time between the rising edges.

On the falling edge the receiver changes to location c and no further
action is taken. This is because the specification required that only the
rising edges can be timed. Now there are four possibilities depicted in the
first row in figure 4.4. The first case is that another one bit follows. In this
case, the next rising edge follows after one bit slot (4Q) and the receiver
changes from location c to location b because y < 5Q holds. The timing
uncertainties are again modelled using Ql and Qh .

In all other cases, there is a zero bit after the one bit which can be
detected because there is no rising edge for at least 6Q time units. In this

4.6. Case Study: Audio Control Protocol 89

1

2+ 3+

4+ 5+

6

s(1), x := 0
s(τ),*

s(1),*

s(τ),*

s(0),*

s(0),*

s(1),* s(stop),*

s(τ)
4Ql < x
x < 4Qh

x < 4Qh

a b c

d e f

r(1)
y := 0

r(1)
y < 5Qh

y := 0

r(0)
y > 5Ql

r(0)
y < 7Qh

y := 0

r(1)
7Ql < y < 9Qh

y := 0

r(1)
5Ql < y < 7Qh

y := 0

r(0)
y < 5Qh

y := 0

r(stop)
y > 7Ql

r(stop)
y > 9Ql

y < 5Qh

y < 9Qh

y < 7Qh

s(0) := s.0 ∧ ¬ s.1 ∧ ¬ s.stop
s(1), s(stop) similarly
s(τ) := ¬ s.0 ∧ ¬ s.1 ∧ ¬ s.stop
r(x) as s(x) but for r events
*: 2Ql < x < 2Qh , x := 0
+: x < 2Qh

wire = low

wire = high

Figure 4.3.: The sender (top) and receiver (bottom) automata

90 4. Phase Event Automata

1 1 1 0 0 1 0 1 1 0 stop

0 0 0 0 0 1 0 0 stop

Figure 4.4.: Gaps between two rising edges in Manchester encoding

case y > 5Q holds and the receiver sends an r .0 event and changes to
location f. Now there are three possibilities. If a second zero bit follows,
there is a rising edge between these bits after 6Q time units. In this
case, the receiver changes to location e and sends another r .0 event to the
environment. If a one bit follows the zero bit, the rising edge is detected
after 8Q time units and the receiver changes back to location b. Finally,
when no rising edge is received within 9Q time units the receiver detects the
end of a message, sends an r .stop event, and switches to the idle location a.

The location e is entered when the rising edge between two adjacent
zero bits is detected. In this location, it switches to d when the wire
becomes low. Then there are three possibilities, depicted in the second
row in figure 4.4. If a third zero bit follows, the rising edge will occur after
4Q time units and location e is entered again. If a one bit follows, there
is a gap of 6Q time units and location b is entered. If no rising edge is
detected, the receiver changes to the idle location a after 7Q time units.

The correctness of the implementation is proven in section 6.3. We will
also give the maximum timing uncertainty δ under which the protocol
remains correct. We show that each event s.x of the sender is eventually
followed by the corresponding event r .x of the receiver.

4.7. Discussion and Related Work

4.7.1. Discussion

The purpose of phase event automata is to define an operational semantics
for CSP-OZ-DC. Its parallel composition allows us to describe the seman-

4.7. Discussion and Related Work 91

tics for multiple classes running in parallel, but it will also be used in the
next chapter to combine the three parts CSP, Object-Z and Duration Cal-
culus. An important property of the parallel composition is theorem 4.19,
which shows that parallel composition corresponds to logical conjunction.
This theorem shows that it is possible to express the Duration Calculus
part as separate automata running in parallel.

The parallel composition also facilitates modular verification. If a prop-
erty only depends on a small part of a complex system it is much easier to
show this for this small part only. The behaviour of the complete system is
always the intersection of the behaviour of each of its part as lemma 4.14
shows. So any property that is satisfied by all interpretations of some part,
also holds for the interpretations of the complete system.

Not all automata models enable such a modular verification. For exam-
ple, the timed automata model of Uppaal [YPD94] supports global vari-
ables. These global variables can be changed by any component. For
example, consider the following automaton using a global variable i .

global int i = 0

bad
i > 8

i < 8
i := i + 2

i > 0
i := i − 2

It can be easily verified with Uppaal that the location labelled bad is not
reachable because i is never increased beyond 8. However, if we add the fol-
lowing automaton in parallel, the bad state of the first automaton suddenly
becomes reachable, even though the second automaton only decreases i .

i := i − 1

If the first automaton runs alone, the bad state is not reachable, because
the value of i is always even and at most to 8. If the second automaton
runs in parallel i is assigned an odd value. If i = 7, it can be increased by
the first automaton to i = 9 and the bad state can be entered. Thus with
assignment to global variables, modular reasoning becomes much more
difficult. One has to consider interferences with global invariants that
are not explicitly present in the automaton; the invariant is only in its

92 4. Phase Event Automata

correctness proof.

4.7.2. Other Timed Automata Models

The work on timed automata goes back to Alur and Dill [AD94]. Their
automaton model also uses the same synchronisation on events as our au-
tomaton model but only allows one event in each transition. A trace of
an automaton only records the events and their time stamps. There is no
notion of state as in our automaton model.

The model of Timed I/O Automata [LV93, KLSV06], which is a re-
stricted version of Hybrid I/O Automata [LSVW96], has both events and
state variables. The event synchronisation is as in CSP. The state variables
are divided into input, output, and local variables. The output and local
variables can only be changed by visible events; input variables can also
be changed by (internal) τ events. On the other hand, the automaton may
not make any restriction on the new values of the input variables. The
parallel composition of Timed I/O Automata is similar to parallel com-
position of Phase Event Automata: the common state variables of both
automata need to agree on their values, and common events have to occur
simultaneously.

However, the distinction of input and output variables is too strict for our
purpose. In a CSP-OZ-DC specification the DC part does not determine
the values for the state variables (it is the Z part that does this) but it
forbids those traces of the output variables that correspond to the forbidden
behaviour. Thus it cannot be represented by an input enabled Timed I/O
Automata that runs in parallel with the Z automaton.

In [CCO+04], Clarke proposes a model checker for state/event based
systems. He uses labelled Kripke structures (LKS) where locations are
labelled by state propositions and edges are labelled by an non-empty set of
events. The model does not allow multiple events to occur at the same time;
instead exactly one event from the set must occur. If no events occur the
location of the automaton may not be changed. The parallel composition
synchronises on common events; components that do not participate on a
communication keep their current location. This model has no real-time
and is thus not suitable for CSP-OZ-DC. Also the states are only modelled
by atomic proposition. Complex data types are not supported.

A tool to analyse timed automata is Uppaal [BDL04, YPD94], a sophis-
ticated model checker developed jointly by Aalborg University in Denmark
and Uppsala University in Sweden. Unfortunately, their timed automata

4.7. Discussion and Related Work 93

model uses a different type of synchronisation similar to CCS. Each event
occurs in two flavours, either it is decorated with ? (input) or with ! (out-
put). Exactly two automata synchronise, when one automaton sends the
input event and the other the output event. There is also the notion of
broadcasting, where a sender automaton can reach multiple receiving au-
tomata. However, the semantics are not as in CSP where all processes have
to agree. With broadcasting a sending process can send an event to some
receiving process if other receiving processes are not ready to receive the
event.

The model checker Kronos [Yov97] uses a similar synchronisation as in
our model: both automata must agree on their common events. Like in
our model, there may be more than one event in one transition. There is
no support for data variables, though.

The model of Statecharts [Har87] is widely used in practise. A variation
of these are state diagrams, which are included in the Unified Modelling
Language (UML) [ISO05]. They are popular because they offer a lot of
tool support including model checking and code generation. They also
have notion of events, data variables and real-time. However, the seman-
tics is complex using asynchronous communication, global variables, and a
super-dense time model. Defining a compositional semantics that enables
modular verification is difficult [Hel98].

The phase event automata are inspired by phase automata [Tap01]. Tap-
ken used these automata to provide an operational semantics for Duration
Calculus formulae. He also designed a model checker for these automata.
Because Tapken uses DC without any event extension, his automata have
no events. The edges in his model are not labelled, but the locations can
be labelled by state invariants. He uses a simple model of clocks: locations
can be part of a clock region, which specifies a minimum and maximum
duration that this region may be active. Parallel composition of automata
is the same as conjuncting the corresponding DC formulae.

Most automata models have a compositional parallel operators allow-
ing modular reasoning for large specifications. However, they usually pay
the price of restricting synchronisations to events only. For example in
[CCO+04] the authors state:

In particular, we forbid the sharing of variables. This restric-
tion facilitates the use of compositional reasoning in verifying
specifications.

On the other hand, Statecharts and Uppaal’s timed automata allow shar-

94 4. Phase Event Automata

ing of global variables. This leads to a non-compositional parallel operator
as we explained in section 4.7.1. However, Tapken demonstrated in [Tap01]
that sharing state variables and a simple compositional parallel operator
are not mutual exclusive properties. We extended his automata model
by events to get the advantages of event- and state-based synchronisation
together with a compositional parallel operator.

Figure 4.5 summarises the different automata models and compares them
by four different properties: synchronisation on events, data, real-time and
whether parallel composition has a simple compositional semantics. All
automata models except for phase automata have a notion of instantaneous
events on which parallel automata synchronise. In phase automata it is
only possible to synchronise over state variables. Some other models also
allow synchronising over state variables, but this usually results in a non-
compositional parallel operator. In Timed I/O Automata this is solved by
restricting the usage of state variables: only one automaton can change
these variables.

Models Ev
en

ts

Dat
a

Rea
l-T

im
e

Com
po

sit
ion

al

Timed Automata [AD94] X - X X
Timed I/O Automata [LV93] X (X) X X

LKS [CCO+04] X - - X
Uppaal [YPD94] X X X -
Kronos [Yov97] X - X X

Statecharts [Har87] X X X -
Phase Automata [Tap01] - X X X

Phase Event Automata X X X X

Figure 4.5.: Comparison of timed automata models

95

5. From CSP-OZ-DC to Phase-Event-Automata

Contents
5.1. Translating CSP . 95

5.2. Translating Object-Z 98

5.3. Translating DC . 101

5.3.1. Power Set Construction for Counterexamples . 103

5.3.2. Creating the Accepting Automaton 135

5.3.3. Case Study: Elevator 138

5.4. Discussion and Related Work 139

In this chapter, we present an operational semantics for CSP-OZ-DC
classes by composition of phase event automata. This translation is com-
positional in the following sense: the CSP part, the Z part, and the DC part
are each translated into separate phase event automata. The behaviour of
the complete class is the parallel composition of these automata.

5.1. Translating CSP

For a CSP process P , we denote by α(P) the set of channels that this
process P uses. This can be computed statically by including all channels
that are referenced in the CSP process equations defining P . Then α(P)
is also the set of event variables of the phase event automat implementing
this process P .

For each channel c ∈ α(P), there is a corresponding event variable in the
automata. If there is data associated with an event, there is a corresponding
parameter variable c/. that is used to communicate the data values. For
example, from the channel declaration

chan request : [x : Z]

the event variable request and the state variable request/. : [x : Z] is derived.
The operational semantics of the CSP process is determined accord-

ing to the previous chapter. This leads to a labelled transition system

96 5. From CSP-OZ-DC to Phase-Event-Automata

(WP , WE ,Q0,−→). This transition system can be simplified by removing
the unreachable states or applying reduction techniques such as [Ros94].
We assume further that P is a non-terminating process and thus there
is no reachable state with an outgoing X-transition. The resulting transi-
tion system (Q , WE , q0,−→) can be translated to a phase event automaton
A = (Ph,V ,A,C ,E , s, I ,E0) as follows:

• Ph = Q . The states of the phase event automata are the same as in
the labelled transition system.

• V = {c : α(q0) • c/.}. The state variables are the parameter variables
associated with the channels occurring in the alphabet of the main
process.

• A = α(q0). The alphabet of the phase event automaton is the alpha-
bet of the main process, i. e., the set of channels occurring there.

• C = ∅. There are no clock variables.

• E = {q , q ′ : Q ; α : EVENTS | q α−→ q ′ • (q , only(α), ∅, q ′)} ∪ Est

and Est = {q : Q • (q , only(τ), ∅, q)}. For each transition in the
LTS there is a corresponding edge in the phase event automaton.
The formula only(α) demands that the event α is communicated and
no other event. Formula only(τ) demands that no event is communi-
cated. For an event c(v) communicating the values v over channel c
we demand that the event variable c is the only event variable that
is true and that the post state of the parameter variable, namely c/.′,
equals the communicated values v .

only(τ) = ∀ e : A • ¬ e
only(c(v)) = c ∧ c/.′ = v ∧ ∀ e : A \ {c} • ¬ e

Furthermore, the stuttering edges Est are added to E . For each q ∈ Q
there is a simple stuttering edge that allows no communication over
the channels of the automaton.

• s(q) = I (q) = true for all q ∈ Q . The state and clock invariants are
always true.

• E0 = {(true, q0)}, i. e., q0 is the single starting state.

5.1. Translating CSP 97

Theorem 5.1 (Soundness of CSP Translation). Let

LTS (P) = (Q , WE , q0,−→)

the simplified labelled transition system of the process P and A be the au-
tomaton with alphabet A constructed as described above. Then

I |= A if and only if Untime(I)BA ∈ T (LTS (P))

Proof. If I |= A holds there is a run

run = 〈(p1,Y1, β1, γ1, t1), . . . , (pj ,Yj , βj , γj , tj), . . .)〉

that matches I and is accepted by A. If we remove all stuttering steps
from this run we get another run that matches I and accepts A. Hence,
we can assume that the run contains no stuttering steps. For each j there
is an αj corresponding to an edge

(pj , only(αj), ∅, pj+1) ∈ E \ Est

such that βj , β
′
j+1,Yj+1 |= only(αj). Hence,

Yj+1 =

{
{c} if αj = c(v),
∅ if αj = τ and

(5.1)

βj+1(c/.) = v if αj = c(v) . (5.2)

Therefore, the sequence of events of the alphabet A occurring in the un-
timed behaviour, Untime(I) B A, is 〈α1, α2, . . . αn−1〉 \ {τ}. The edge
(pj , only(αj), ∅, pj+1) corresponds to the relation pj

αj−→ pj+1. This yields
the trace

p1
α1−→ p1

α2−→ p2 · · · .

For the initial state p1 there is an edge in E0, which means p1 = q0. Hence,
Untime(I)BA ∈ T (LTS (P)).

If Untime(I)BA ∈ T (LTS (P)), there is a transition sequence

q0 = p1
α1−→ p1

α2−→ p2 · · ·

with Untime(I) B A = 〈α1, α2, . . . 〉 \ {τ}. This sequence corresponds to
the run

run = 〈(p1,Y1, β1, γ1, t1), . . . 〉
of A with Yi and βi defined according to (5.1) and (5.2) and γi = ∅. If
the times ti are set according to the point in time when αi occurs, this run
matches the interpretation I. Hence, I is accepted by the automaton. 2

98 5. From CSP-OZ-DC to Phase-Event-Automata

Case Study

We apply the above algorithm on the case study for the elevator introduced
in section 3.2.2. The CSP part is as follows

main
c= newgoal → start → Drive

Drive c= (passed → Drive) 2 (stop → main)

The alphabet of the CSP process main is

α(main) = {newgoal , start , passed , stop} .

These are all signal channels, i. e., there are no parameters associated with
them, hence there is no need to include the parameter channels. Con-
structing the labelled transition system and reducing it with the technique
of [Ros94] results in the following transition system.

main

start → Drive

Drive

newgoal

startstart

stop

passed

The CSP process is translated to the phase event automata A(CSP) =
(P ,V ,A,C ,E , s, I , Init), with P = {main, start → Drive,Drive}, V = ∅,
A = {newgoal , start , passed , stop}, C = ∅, s(p) = I (p) = true and E ,
Init as depicted in figure 5.1.

5.2. Translating Object-Z

The Object-Z part is translated into an automaton with a single state.
The variables of the automaton are the variables Var(State) declared in
the state schema of the CSP-OZ-DC class. Additionally, it contains the

5.2. Translating Object-Z 99

main

true
start → Drive

true
Drive
truenewgoal

∧ ¬ start
∧ ¬ stop
∧ ¬ passed

start
∧ ¬ newgoal
∧ ¬ stop
∧ ¬ passed

stop
∧ ¬ newgoal
∧ ¬ start
∧ ¬ passed

passed
∧ ¬ newgoal
∧ ¬ start
∧ ¬ stop

¬ newgoal
∧ ¬ start
∧ ¬ stop
∧ ¬ passed

¬ newgoal
∧ ¬ start
∧ ¬ stop
∧ ¬ passed

¬ newgoal
∧ ¬ start
∧ ¬ stop
∧ ¬ passed

Figure 5.1.: Translation of CSP part of elevator

parameter variables c/. for the channels c for which it provides operation
schemas. The communication alphabet A of this automaton consists of
all communication channels c for which the class contains an operation
schema com c. For each communication event the automaton contains an
edge looping from the single state into itself. The guard of this edge de-
mands that only the corresponding event occurs and that the pre and post
state relate according to the communication schema. If the schema has
parameters in?, out !, they are assigned by a let construct to the values
communicated by c/.′, e. g., let in? == c/.′.in; out ! == c/.′.out • com c.
Furthermore, there is the stuttering edge that demands that all state vari-
ables do not change and no communication in the alphabet occurs. Finally,
there is one initial edge to the single state that has the Init schema of the
CSP-OZ-DC class as guard. Thus, the resulting automaton is as follows:

A = (P ,V ,A,C ,E , s, I ,E0)
P = {p0}
V = Var(State) ∪ {c : A • c/.}
A = {set of channels with communication schemata}
C = ∅
E = {c : A • (p0, only(c) ∧ let param == c/.′.param • com c, ∅, p0)}

∪ {(p0, only(τ) ∧ ΞState, ∅, p0)}

100 5. From CSP-OZ-DC to Phase-Event-Automata

s(p0) = State (invariant from the state schema)
I (p0) = true

E0 = {(Init , p0)}

Theorem 5.2 (Soundness of Z Translation). Let A be the automaton con-
structed as described above. Then I |= A if and only if I is accepted by the
Z part, which means (c.f. page 58) that for

Untime(I) = 〈M0, c1(M1(c1/.)),M1, . . . 〉 :

• M0 ∈ [[Init]]P,

• Mi ∈ [[State]]P for all i ,

• (Mi−1 ∪M ′
i ∪Mi(ci/.)) ∈ [[com ci]]

P,

Proof. The formula I |= A holds if and only if there is a run

run = 〈(p0,Y1, β1, ∅, t1), . . .)〉

that matches I and is accepted by A. By definition 4.7, run is a run of A
if and only if

• for the initial edge (Init , p0), β1 |= Init holds,

• for each βj the state invariant State holds,

• for each βj , βj+1,Yj+1 there is an edge

(p0, only(c) ∧ let param == c/.′.param • com c, ∅, p0) ∈ E

such that

βi , β
′
i+1,Yi+1 |= only(c) ∧ let param == c/.′.param • com c, ∅, p0) .

For the untimed run Untime(I) = 〈M0, c1(M1(c1/.)),M1, . . . 〉 we have
βj+1 = Mj and Yj+1 = {cj} for all j . Hence the three conditions above
hold if and only if

• M0 ∈ [[Init]]P,

• Mi ∈ [[State]]P for all i ,

• (Mi−1 ∪M ′
i ∪Mi(ci/.)) ∈ [[com ci]]

P.

2

5.3. Translating DC 101

Case Study

We apply the translation of the Z part on the case study for the elevator in-
troduced in section 3.2.2. There are four channels with operation schemas.
Therefore, the alphabet is A = {newgoal , start , stop, passed}. As for the
CSP part there are no parameter variables as all channels are signals. The
state variables are V = {current , goal , start}, the variables occurring in
the state schema. The automaton is given in figure 5.2. The main state
has five loop edges. The top most is the stuttering edge, the other edges
correspond to the four operation schemas.

5.3. Translating DC

The formulae occurring in the DC part of a CSP-OZ-DC class are of the
kind ¬ (phase1

a · · · a phasen). Each DC formula is translated into a
separate phase event automaton. The basic idea is to build a deterministic
automaton that reaches certain states if and only if it observed phase1

a

· · · a phasen . If these states are then removed from the automaton it
forbids exactly those runs that would violate the formula.

For the constructs occurring in a trace specification (dPe, ` ∼ k , F ∧ G ,
F a G) it is possible to build a non-deterministic phase event automaton
that can reach a certain location if the interpretation for an observed run
satisfies the formula. However, a deterministic automaton may not always
exists. As an example consider the formula (2.2) on page 23, which is given
here again:

¬ (true a l ev a ` = 1 a l ev a true) . (5.3)

A deterministic automaton that should observe this behaviour has to start
a clock every time it observes an ev event. It cannot know in advance if
this is the ev event that corresponds to the first event in the trace above,
or if it is just part of one of the true phases. Only after the clock reached
1, the clock variable can be used for another ev event. However, there may
be an unbounded number of ev events in an interval of length 1, so a deter-
ministic automaton would need an infinite number of clocks. Therefore no
deterministic phase event automaton for the above trace exists. It is not
possible to build a phase event automaton that implements formula (5.3).

In this section we will show that for the restricted set of counterexample
traces it is possible to build a deterministic automaton. The basic idea is
adopted from finite automata theory: to construct a deterministic finite

102 5. From CSP-OZ-DC to Phase-Event-Automata

p0

true

only(τ) ∧ ΞState
only(newgoal) ∧ com newgoal

only(start) ∧ com start

only(stop) ∧ com stop
only(passed) ∧ com passed

goal = Min
∧ current = Min

∧ dir = 0

The loop edges are labelled with:

only(τ) ∧ ΞState
= ¬ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed

∧ current ′ = current ∧ goal ′ = goal ∧ dir ′ = dir
only(newgoal) ∧ com newgoal

= newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed
∧ Min ≤ goal ′ ≤ Max ∧ goal ′ 6= current
∧ current ′ = current ∧ dir ′ = dir

only(start) ∧ com start
= start ∧ ¬ newgoal ∧ ¬ stop ∧ ¬ passed

∧ (goal > current ⇒ dir ′ = 1)
∧ (goal < current ⇒ dir ′ = −1)
∧ current ′ = current ∧ goal ′ = goal

only(stop) ∧ com stop
= stop ∧ ¬ newgoal ∧ ¬ start ∧ ¬ passed

∧ goal = current
∧ current ′ = current ∧ goal ′ = goal
∧ dir ′ = dir

only(passed) ∧ com passed
= passed ∧ ¬ newgoal ∧ ¬ start ∧ ¬ stop

∧ current ′ = current + dir
∧ goal ′ = goal ∧ dir ′ = dir

Figure 5.2.: Translation of Object-Z part of elevator

5.3. Translating DC 103

automaton (DFA) from a nondeterministic one (NFA) the locations of the
DFA are labelled by subsets of the locations of the NFA. One problem
here are the clocks. If one transition of the non-deterministic automaton
resets a clock and another does not and both transitions are enabled there
must be a decision whether the clock should be reset in the deterministic
automaton. To solve this problem we allow only either an upper bound
(` ≤ t) or a lower bound (` ≥ t) for each phase. For upper bounds a clock
is reset whenever the corresponding phase can be entered (even if it was
active before) to keep the value of the clock as small as possible; for lower
bounds the clock is reset only when the phase cannot stay active.

The state variables V of the DC automata are the same as for the Z
part: V = Vars(State). The set of event variables A contains all channels
in the interface part of the specification. The clock variables C are defined
later. We need a unique clock for each phase with a time restriction.

The guards used in the automaton are from the set L(V ∪ A ∪ C).
We quote logical operations on formulae of the set L(V ∪ A ∪ C), e. g.,
‘∧’, ‘∨’, ‘¬ ’, ‘⇔’ to distinguish them from the logical symbols in the meta-
language, in which we specify our algorithm. The operator ‘

∧
’ repeatedly

applies ‘∧’ on a set of predicates. It is logically equivalent to a universal
quantifier ∀, but is only used for finite sets. The values that represent the
truth and falsehood predicates are named [true], [false] : L(V ∪A∪C) to
distinguish them from the true and false predicate of the meta-language.
Furthermore, we use the expression [predicate] for some Boolean predicate
in the meta-language to denote [true] or [false] depending on the value
of predicate. This expression is defined as [predicate] == if predicate then
[true] else [false]. Note that the evaluation of [predicate] is done in the
meta language.

We assume that equivalent formulae are represented by the same element
in L(V ∪ A ∪ C). All unsatisfiable formulae are equal to [false] and all
tautologies are equal to [true]. For example, ([true] ‘∨’ F) = [true] and
([false] ‘⇔’ F) = (‘¬ ’F) for all F ∈ L(V ∪A ∪ C).

5.3.1. Power Set Construction for Counterexamples

Recall the syntax of counterexample formulae from page 23:

ce formula ::= ¬ (phase a (phase | events)
a · · · a (phase | events) a true)

104 5. From CSP-OZ-DC to Phase-Event-Automata

phase ::= (true | dPredicatee)[∧ ` ∼ t]
[∧ �NAME . . . ∧ �NAME]

∼ ::= ≤ | < | > | ≥
events := lNAME | 6 lNAME

| events ∨ events | events ∧ events

A counterexample is a negated list of phase and events formulae that are
combined by chop operators. It must begin with a phase formula and end
with true. A phase is either true or an everywhere formula dPredicatee
where Predicate is some formula from L(V). Its duration can be restricted
with ` ∼ t and events can be forbidden to occur during the phase using
�NAME . Here NAME must denote an element from the set A, the set of
channels declared in the interface part. Note that there can be at most one
time restriction and that equality ` = k is not allowed. This is necessary to
forbid specifications like (5.3) that cannot be converted into a phase event
automaton. An events formula always requires a zero-length interval on
which some events must occur and others are forbidden.

We can represent a phase formula and all its preceding events formulae
by the data structure PhaseSpec:

TimeOp ::= none | less | lessequal | greater | greaterequal

PhaseSpec
inv : L(V)
allowEmpty : B
timeop : TimeOp
bound : Time
forbidden : F A
entryEvents : L(A)

allowEmpty ⇒ (inv = [true]
∧ timeop 6∈ {greater , greaterequal})

timeop = none ⇔ bound = 0

The predicate inv is the state expression occurring in the phase if it is of
the form dinve and is [true] if phase is a true-phase. The Boolean flag
allowEmpty is set for a true-phase to distinguish it from a phase dtruee;
the latter requires a non-empty interval. The variable timeop denotes the

5.3. Translating DC 105

relation ∼ and bound is the minimum or maximum time. If there is no re-
striction on the duration, timeop = none and bound = 0. The set forbidden
contains all events ev occurring in a � ev element of the phase formula.
Finally, entryEvents is the conjunction of all events formulae preceding the
phase formula. It is [true] if there is no preceding events formula.

A counterexample trace can be represented as a sequence of phase spec-
ifications.

Trace == seqPhaseSpec

For proving correctness of the construction it is convenient to define the
ith prefix of a trace tr . The function Prefix returns a DC formula that
describes the first i phases of a trace tr : The complete counterexample
formula is the negation of Prefix (#tr , tr).

Prefix : N× Trace → DCForm

Prefix (0, tr) = ` = 0
∀ i : N | i > 0 • Prefix (i , tr) = Prefix (i − 1, tr)

a tr(i).entryEvents
a (dtr(i).inve ∨ tr(i).allowEmpty) ∧

` tr(i).timeop tr(i).bound ∧∧
ev : tr(i).forbiddenEvents • � ev

The formula Prefix is defined inductively. With Prefix (0, tr) we denote the
empty prefix, which is equivalent to ` = 0, the neutral element of a. When
computing Prefix (i , tr) for i > 0 we add to Prefix (i−1, tr) the DC formula
that describes the i -th phase: At the beginning of the ith phase the entry
event formula must be satisfied. If the phase is a true phase (denoted by
allowEmpty) the part dtr(i).inve ∨ tr(i).allowEmpty evaluates to true,
otherwise the formula dtr(i).inve must hold. The length restriction ` ∼ t
is added (∼ is represented by tr(i).timeop and t by tr(i).bound). Finally,
the forbidden events must not occur during this phase.

The algorithm needs to distinguish between phases that have a lower
bound ` ≥ k , phases that have an upper bound ` ≤ k , and phases without
any time bounds. Therefore we define auxiliary sets LB(tr) (for lower
bounds) and UB(tr) (for upper bounds) that comprise these phases.

106 5. From CSP-OZ-DC to Phase-Event-Automata

LB ,UB : Trace → P N

∀ tr : Trace •
LB(tr) = {i : dom tr |

tr(i).timeop ∈ {greater , greaterequal}}
∧ UB(tr) = {i : dom tr |

tr(i).timeop ∈ {less, lessequal}}

For each phase i with an upper or lower bound we add a corresponding
clock ci that measures the duration of this phase.

The construction of the power set automaton works in a similar way
as in finite automata theory. The locations of the automaton are labelled
by set of trace indices. Whenever the automaton has detected a prefix of
the counterexample trace up to a certain element, the corresponding index
is in the set labelling the current location of the automaton. Addition-
ally, the automaton also needs to remember discrete parts of the real-time
behaviour, e. g., whether the lower bounds on the duration have passed.
Instead of a single subset, we therefore have four subsets:

in An index is in this set if and only if the automaton has detected a
prefix of the counterexample trace up to this element. We also call
phase i active, if i ∈ in. Phases having a lower bound are even active
if their bound has not yet been reached.

wait The index of a phase with a lower bound is in this set if it is active and
the duration of the phase is less than the lower bound. In this case,
the corresponding clock measures the duration of the phase and as
soon as the lower bound is reached, a new location is entered, where
the index is no longer in the wait set. We will also say that a phase
is waiting if its index is in this set.

gteq To support phases with the bound ` ≥ k , we reset the corresponding
clock ci at the earliest moment, the phase gets active. As soon as
ci ≥ k , the waiting state is left. Under certain circumstances, the
clock is reset before the phase can be entered. Later on, we present
an example where this happens. In this case, instead of checking for
ci ≥ k , the automaton needs to check for ci > k . To distinguish these
cases, the gteq set is used. A phase i is in this set if the automaton
needs to check for ci ≥ k . This set is always a subset of wait . We
will also say that the gteq flag is set for the phase i if i ∈ gteq .

5.3. Translating DC 107

less Similarly, sometimes for phases with an upper bound ` ≤ k the clock
is reset too late. So instead of checking for ci ≤ k , the automaton
needs to check for ci < k . In this case, phase i is in the set less. If
the bound of a phase is strict (` < k), this phase is always in the set
when active. We will then also say that the less flag is set for this
phase. Obviously, the less flag is only set for active phases with an
upper bound. There is another side condition i−1 ∈ in \wait ∨ ∅ 6|=
tr(i).entryEvents. This condition is explained in example 5.9.

The following schema PowerSet combines the four sets in, wait , gteq ,
and less. The definition depends on the counterexample trace tr : Trace.

PowerSet(tr : Trace)
in,wait , gteq , less : dom tr

in ⊆ dom tr
wait ⊆ in ∩ LB(tr)
gteq ⊆ wait
less ⊆ in ∩UB(tr)
∀ i : less • i − 1 6∈ in \ wait ∨ ∅ 6|= tr(i).entryEvents

Because of gteq ⊆ wait ⊆ in and less ⊆ in and less ∩wait ⊆ UB ∩LB =
∅, there are only five possibilities for a phase to belong to these sets. The
four sets can be abbreviated as a single set, where the elements are flagged
by symbols.

• If i ∈ gteq ⊆ wait ⊆ in then i 6∈ less. We denote this case by i≥.

• If i 6∈ gteq and i ∈ wait ⊆ in then i 6∈ less. We denote this by i>.

• If i ∈ less ⊆ in, then i 6∈ gteq and i 6∈ wait . We denote this by i<.

• If i 6∈ gteq ,wait , less and i ∈ in then we denote this by plain i .

• Otherwise phase i belongs to none of the sets and is omitted from
the single set.

Example 5.3. The location p = 〈| in 7→ {1, 2, 4},wait 7→ {2}, gteq 7→
{2}, less 7→ {4} |〉 is abbreviated as {1, 2≥, 4<}.

Example 5.4. Figure 5.3 depicts the automaton for the DC formula

true︸ ︷︷ ︸
1

a dAe ∧ ` ≥ 4︸ ︷︷ ︸
2

a dBe ∧ ` < 6︸ ︷︷ ︸
3

.

108 5. From CSP-OZ-DC to Phase-Event-Automata

The unreachable locations with 1 6∈ in were omitted. The figure shows that
the power set automaton becomes complicated even for DC formulae with
only few chops. In the following we will explain the algorithm by which
this automaton is constructed.

Note that the automaton is deterministic in the sense of definition 4.20.
For each location of the automaton and each clock, variable and event
valuation there is exactly one successor location. For example, the top
right location {1, 3<} has four outgoing edges to the top four locations.
If for the next state, B does not hold or if c3 ≥ 6 holds the automaton
changes to one of the left locations depending on the new value of A.
Otherwise (if c3 < 6 and B holds) it either stays in location {1, 3<} or
changes to location {1, 2≥, 3<}, also depending on the new value of A. It
cannot change to one of these two locations if c3 = 6 holds as it has to stay
there for some non-zero time and that would violate the clock invariant.

To define when the automaton has observed the prefix of the trace up
to and including the ith element, we need to know the current location of
the automaton, the current value of clocks, and the pending events. For
example, when the location labelled by {1, 3<} in figure 5.3 is active, the
automaton has accepted the whole trace Prefix (3, tr) only if c3 < 6 holds.
If c3 = 6 holds, the bound of the last phase would be violated. If the
current location is {1, 2≥}, the automaton accepted Prefix (2, tr) = true a

dAe ∧ ` ≥ 4 if and only if c2 ≥ 4 holds.
Given a power set location p and a phase i , the function complete gives

the condition under which the prefix Prefix (i , tr) was observed. It also
takes clocks and succeeding true phases with zero length into account.
We will later use this function to prove the correctness of the construction.

complete : Trace × ranPowerSet × N → L(A ∪ C)

∀ tr : Trace; p : PowerSet(tr); i : N •
complete(tr , p, i) =

([i ∈ p.in] ‘∧’
if i ∈ p.wait then

(if i ∈ p.gteq then ci ≥ tr(i).bound else [false])
else (if i ∈ p.less then ci < tr(i).bound else [true]))

‘∨’ ([i > 1 ∧ tr(i).allowEmpty] ‘∧’
complete(tr , p, i − 1) ‘∧’ tr(i).entryEvents)

5.3. Translating DC 109

{1}
¬ A

{1, 2≥}
A

c2 ≤ 4

{1, 2}
A ∧ ¬ B

{1, 3<}
¬ A ∧ B

c3 ≤ 6

{1, 2≥, 3<}
A ∧ B
c2 ≤ 4
c3 ≤ 6

{1, 2, 3}
A ∧ B

c2 := 0

c3 ≥ 6
∨ ¬ B ′

c3 ≥ 6
∨ B ′

c2 := 0 c2 := 0c2 < 4
∨ ¬ B ′

c2 ≥ 4
c3 := 0

c2 ≥ 4

c2 ≥ 4

¬ B ′ c3 := 0

c2 ≥ 4

c3 ≥ 6
∨ ¬ B ′

c2 ≥ 4

(c2 < 4
∧ c3 ≥ 6)
∨ ¬ B ′

c2 < 4 c2 ≥ 4
c3 := 0

Figure 5.3.: Automaton for true a dAe ∧ ` ≥ 4 a dBe ∧ ` < 6

110 5. From CSP-OZ-DC to Phase-Event-Automata

If phase i is active and has no time bounds it is always complete and the
function complete will return [true]. If phase i has a lower time bound and
is not waiting it is also complete. If it is waiting, it can only be complete
if the phase has a greater-equal bound and the clock has just reached the
bound. If the phase has a strict upper time bound (i ∈ p.less), it is only
complete if the upper bound has not yet been reached.

A phase i is also complete if the previous phase is complete and phase i
holds for an empty interval. In this case, the entry events of phase i must
occur.

Example 5.5. For the top right location of the automaton in figure 5.3,
the third phase is complete if and only if

complete(tr , 〈| in 7→ {1, 3},wait 7→ ∅, gteq 7→ ∅, less 7→ {3} |〉, 3)
= [3 ∈ {1, 3}] ‘∧’ if 3 ∈ ∅ then . . .

else if 3 ∈ {3} then c3 < 6 else [true]))
‘∨’ ([false] ‘∧’ complete(tr , p, 2) ‘∧’ [true])

= ([true] ‘∧’ c3 < 6) ‘∨’ ([false])
= c3 < 6

Consider two adjacent phases without any event required in between,
e. g., dAe a dBe. If an interpretation satisfies dA ∧ Be for some interval, it
also satisfies the formula dAe a dBe. Therefore, for a valuation satisfying
A ∧ B , the automaton should not only enter the first phase dAe but should
also immediately enter the second phase. We call this seeping because the
control flow seeps through phase dAe immediately to phase dBe. The
function canseep determines if the automaton can seep into a phase i from
the active phases given by the power set location p. This is not possible
if an event is required for entering phase i . Also, the previous phase must
be active and not waiting.

canseep : Trace × ranPowerSet × N → B

∀ tr : Trace; p : PowerSet(tr) •
canseep(tr , p, i) ⇔ i − 1 ∈ p.in \ p.wait ∧

∅ |= tr(i).entryEvents)

The mechanism of seeping is crucial to create a stuttering invariant au-
tomaton. However, it complicates the construction and is responsible for
the gteq and less flags. The following examples illustrate the use of canseep:

5.3. Translating DC 111

{1}
A ∧ ¬ B

{1, 2}
A ∧ B

{2}
B

∅
true

¬ A

¬ A′

¬ A′ ∧ ¬ B ′

¬ A′

¬ A′ ∧ ¬ B ′ ¬ B ′

Figure 5.4.: Automaton for dAe a dBe

Example 5.6. The automaton for the above example dAe a dBe is given in
figure 5.4. Note that there are three initial locations. If initially ¬ A holds,
the location ∅ is entered: the automaton observed d¬ Ae, which is not a
prefix of the formula dAe a dBe. If initially A ∧ B holds, we enter location
{1, 2} because the interpretation satisfies both dAe and dAe a dBe. If A ∧
¬ B holds we only enter location {1}. The invariant of this location also
requires ¬ B and the edge to {1, 2} must be taken as soon as A ∧ B holds.
The location {2} is entered if B ∧ ¬ A holds and the previous location was
{1} or {1, 2}. The condition B ′ was omitted from the corresponding edges
as it is already implied by the invariant of the location {2}. However, the
invariant does not require ¬ A: We cannot reenter {1, 2} as A did not hold
continuously from the beginning.

The state invariant of a location p is the logical conjunction of the
state expressions tr(i).inv of all active phases i ∈ p.in and the nega-
tion of the state expressions tr(j).inv of all inactive phases j for which
canseep(tr , p, j) is true. The location {1} has the additional invariant ¬ B
because canseep(tr , {1}, 2) is true. The location {2} does not have the
condition ¬ A because canseep(tr , {2}, 1) is false.

Example 5.7. If there is a lower bound for the first phase as in dAe ∧ ` >

1 a dBe seeping into B is only possible when the duration has expired.
The corresponding automaton is depicted in figure 5.5. Note that the right
four locations are identical to the four locations of the previous automaton.

112 5. From CSP-OZ-DC to Phase-Event-Automata

{1>}
A, c1 ≤ 1

{1}
A ∧ ¬ B

{1, 2}
A ∧ B

{2}
B

∅
true

¬ A

c1 ≥ 1

c1 ≥ 1

¬ A′

¬ A′

¬ A′ ∧ ¬ B ′

¬ A′

¬ A′ ∧ ¬ B ′ ¬ B ′

Figure 5.5.: Automaton for dAe ∧ ` > 1 a dBe

The new location {1>} does not require ¬ B , as the B -phase cannot be
entered while c1 < 1. The formula canseep(tr , {1>}, 2) evaluates to false
because 1 is in the set wait . After one time unit, the automaton leaves the
waiting location and switches to {1} or {1, 2} depending on the value of
B . For these locations the seeping rule applies.

As seen in the previous examples, sometimes phases are entered too early.
In example 5.6, the second phase can be entered at time zero, even though
dAe requires some positive duration. In example 5.7, the second phase can
be entered at time 1, even though the first phase requires ` > 1. Because
of this, phases with a greaterequal time bound need special treatment. The
following example illustrates the construction using the gteq flag.

Example 5.8. The automaton in figure 5.6 belongs to the counterexample
trace dtruee a dBe ∧ ` ≥ 2 a d¬ Be. The first phase requires some
non-zero duration, and thus if initially we start in phase 1 and phase 2 by
seeping, then phase 2 is entered too early. Here location {1, 2>} is an initial
location although phase 2 cannot start immediately. However, it can be
initially entered because canseep(tr , {1}, 2) holds. When the value of clock
c2 equals 2, the automaton has observed an interval where dBe ∧ ` = 2
holds. However, the formula dtruee a dBe ∧ ` ≥ 2 does not hold for this
interval as it requires a length of more than 2 time units. Therefore, the
automaton cannot switch to phase 3 from {1, 2>} when c2 = 2 and ¬ B
holds. On the other hand, if a non-empty interval where ¬ B holds is

5.3. Translating DC 113

{1}
¬ B

{1, 2>}
B , c2 ≤ 2

{1, 2≥}
B , c2 ≤ 2

{1, 2}
B

{1, 3}
¬ B

c2 := 0
c2 ≥ 2

c2 < 2
c2 ≥ 2

c2 ≥ 2

c2 := 0

Figure 5.6.: Automaton for dtruee a dBe ∧ ` ≥ 2 a d¬ Be

followed by an interval of exactly length 2 where B holds, the automaton
can directly switch from {1, 2≥} to {1, 3} (and thus enter phase 3), when
c2 = 2. To distinguish these cases we need the two different locations
{1, 2>} and {1, 2≥}.

The seeping rule also affects phases with upper bounds. This is illus-
trated by the following example:

Example 5.9. Consider the automaton for the formula dAe a ` < 2 in
figure 5.7. If A holds, the automaton does not only enter phase 1 but
also phase 2 because an interval on which dAe holds can be chopped into
dAe a ` < 2. As long as A holds, there is no need to measure any durations.
Only when ¬ A is observed the first phase must be left and clock c2 is used
to measure the duration of phase 2.

{1, 2}
A

{2<}
c2 ≤ 2

∅
true

¬ A

¬ A′

c2 := 0
c2 ≥ 2

Figure 5.7.: Automaton for dAe a ` < 2

114 5. From CSP-OZ-DC to Phase-Event-Automata

{1<, 2}
A, c1 ≤ 1

{2<}
c2 ≤ 2

{2}
c2 ≤ 2

∅
true

¬ Ac1 ≥ 1
c2 := 0

c1 < 1 ∧ ¬ A′

c2 := 0

c2 ≥ 2

c2 ≥ 2

Figure 5.8.: Automaton for dAe ∧ ` < 1 a ` ≤ 2

The rule for a phase i with an upper bound is as follows. As long as the
formula canseep(tr , p, i) holds, the clock ci is not used by the automaton.
The transition from phase i − 1 to phase i can be taken at any time, so
the upper bound of phase i can be fulfilled by taking the transition as late
as possible. If seeping is not possible, for example, if phase i − 1 is no
longer active, the clock ci is reset to check the upper bound of phase i .
Only in this case, the clock is compared against the bound of phase i .
The last condition in PowerSet(tr) schema makes sure that the less flag
is only set when ¬ canseep(tr , p, i) holds, i. e., i − 1 6∈ p.in \ p.wait or
∅ 6|= tr(i).entryEvents.

Example 5.10. When applying the previous rule, the clock is reset too
late, sometimes. For example, consider the formula dAe ∧ ` < 1 a ` ≤ 2.
The corresponding automaton, c. f. figure 5.8, starts in {1<, 2} if A holds,
because if phase 1 is active, phase 2 is also active due to seeping. It stays in
this location as long as A holds and c1 ≤ 1. Note that for a deterministic
automaton, the clock invariant must not contain strict bounds. If A con-
tinues to hold, the location is left after one time unit. At this time, clock
c2 is reset. However, the DC formula requires phase 2 to start earlier. The
clock was reset too late. Now, I, [0, t] |= dAe ∧ ` < 1 a ` ≤ 2 holds only
if t < 3. At time t , the clock c2 has the value t − 1 so the DC formula is
only accepted as long as c2 < 2. Therefore, the less flag for phase 2 must
be set in this case. On the other hand, if we have a different interpretation
where at time t < 1 the predicate A no longer holds, then the automaton
enters location {2} at time t and the clock is reset at the right moment.
In this case, the less flag is not set.

5.3. Translating DC 115

After a transition, a phase can be active for three different reasons: If it
was active before, it keeps staying active if no forbidden events occur, and
the upper bound is still satisfied. If the previous phase was complete, the
phase can be entered. If the previous phase is active after the transition, a
phase can be activated by seeping. For these three cases, the corresponding
condition is computed by the following functions.

keep, enter , seep : Trace × ranPowerSet × N → L(V ′ ∪A ∪ C)

∀ tr : Trace; p : PowerSet(tr); i : N •
keep(tr , p, i) = [i ∈ p.in] ‘∧’

‘
∧

’{ev : tr(i).forbidden • ¬ ev} ‘∧’ (tr(i).inv)′ ‘∧’
(if i ∈ UB(tr) ∧ ¬ canseep(tr , p, i)

then ci < tr(i).bound else [true]) ∧
enter(tr , p, i) = complete(tr , p, i − 1)‘∧’

tr(i).entryEvents ‘∧’ (tr(i).inv)′) ∧
seep(tr , p, i) = [canseep(tr , p, i)] ‘∧’ (tr(i).inv)′

A phase stays active (keep) if and only if it was active before, no forbidden
event occurs, the post state still satisfies the invariant, and for phases with
an upper bound, that bound must not have been reached, yet. A new
phase is activated (enter) if and only if the previous phase is complete,
the post state satisfies the invariant of the new phase, and all entry events
occur. The automaton can seep into a phase if the condition canseep and
the phase invariant hold.

Given a counterexample trace tr , a location of the power set automaton
p : PowerSet(tr) a set of clocks X : P C that are reset, and a successor
location of the automaton p′ : PowerSet(tr), the function guard (depicted
in figure 5.9) calculates the corresponding guard g of the edge (p, g ,X , p′)
in the power set automaton. A phase is active in the successor location
(p′.in) if and only if at least one of the following is true: It stays active
(keep), it is activated (enter), or it can be entered together with the pre-
vious phase by the seeping rule (seep). Note that the function seep takes
the successor location p′ as parameter.

If for a phase with a lower bound the keep condition holds, the clock is
not reset. This is because the clock should continue accumulating the time
the phase was active. If keep does not hold, but the phase is activated due
to enter or seep, the clock needs to be reset to start measuring the duration
of the phase. In this case, the phase must also be marked as waiting. A
phase is also waiting if it was waiting before and the corresponding clock

116 5. From CSP-OZ-DC to Phase-Event-Automata

guard : Trace × ranPowerSet × P C × ranPowerSet
→ L(V ′ ∪A ∪ C)

∀ tr : Trace; p : PowerSet(tr); X : P C ; p′ : PowerSet(tr) •
guard(tr , p,X , p′) = ‘

∧
’{i : dom tr •

([i ∈ p′.in] ‘⇔’
keep(tr , p, i) ‘∨’ enter(tr , p, i) ‘∨’ seep(tr , p′, i)) ‘∧’

(if i ∈ LB(tr) ∩ p′.in then
([ci ∈ X] ‘⇔’ ‘¬ ’ keep(tr , p, i)) ‘∧’
([i ∈ p′.wait] ‘⇔’

[ci ∈ X]‘∨’
([i ∈ p.wait] ‘∧’ ci < tr(i).bound)) ‘∧’

([i ∈ p′.gteq] ‘⇔’
if ci ∈ X then [tr(i).timeop = greaterequal]‘∧’

enter(tr , p, i)
else [i ∈ p.gteq ∧ i ∈ p′.wait]) ‘∧’

[i 6∈ p′.less]
else if i ∈ UB(tr) ∩ p′.in ∧ ¬ canseep(tr , p′, i) then

([ci ∈ X] ‘⇔’ enter(tr , p, i) ‘∨’ [canseep(tr , p, i)]) ‘∧’
[i 6∈ p′.wait] ‘∧’ [i 6∈ p′.gteq] ‘∧’
([i ∈ p′.less] ‘⇔’

if ci ∈ X then [tr(i).timeop = less]‘∨’
‘¬ ’ enter(tr , p, i)

else [i ∈ p.less])
else [ci 6∈ X]‘∧’

[i 6∈ p′.wait] ‘∧’ [i 6∈ p′.gteq] ‘∧’ [i 6∈ p′.less])}

Figure 5.9.: Definition of guard

5.3. Translating DC 117

has not reached its bound, yet. If the automaton enters a phase with a
≥ bound directly (by the enter condition) this is remembered by the gteq
flag. The flag is preserved if the automaton keeps staying in this phase as
long as the waiting flag is also set.

When the automaton is in location p′ containing a phase i with an
upper bound and the clock is active, i. e., ¬ canseep(tr , p′, i), the clock
needs to be reset whenever the enter condition holds. It also needs to be
reset if in the previous phase the clock was not yet active (canseep(tr , p, i)
holds, but the enter condition does not hold due to a violated entryEvents
constraint). In the latter case the less flag is set even for phases with a ≤
bound as the reset came too late: The phase i could have been entered at
any time during the previous location p as canseep(tr , p, i) holds but not
at the moment the automaton takes the transition. To compensate this
we have to treat this phase as if it has a strict bound. Of course, the less
flag always has to be set when entering a phase with a strict bound. If the
clock was not reset, the value of the less flag has to be kept the same.

Example 5.11. We continue the example of the automaton in figure 5.3 by
calculating some guards for the trace

true︸ ︷︷ ︸
1

a dAe ∧ ` ≥ 4︸ ︷︷ ︸
2

a dBe ∧ ` < 6︸ ︷︷ ︸
3

.

and the locations

p1 = {1} = 〈| in 7→ {1},wait 7→ ∅, gteq 7→ ∅, less 7→ ∅ |〉
p2 = {1, 2≥, 3<} = 〈| in 7→ {1, 2, 3},wait 7→ {2}, gteq 7→ {2}, less 7→ {3} |〉
p3 = {1, 3<} = 〈| in 7→ {1, 3},wait 7→ ∅, gteq 7→ ∅, less 7→ {3} |〉

guard(tr , p3, ∅, p1) =
([1 ∈ p1.in] ‘⇔’

keep(tr , p3, 1) ‘∨’ enter(tr , p3, 1) ‘∨’ seep(tr , p1, 1)) ‘∧’
[c1 6∈ ∅] ‘∧’ [1 6∈ p1.wait] ‘∧’ [1 6∈ p1.gteq] ‘∧’ [1 6∈ p1.less]) ‘∧’
([2 ∈ p1.in] ‘⇔’

keep(tr , p3, 2) ‘∨’ enter(tr , p3, 2) ‘∨’ seep(tr , p1, 2)) ‘∧’
[c2 6∈ ∅] ‘∧’ [2 6∈ p1.wait] ‘∧’ [2 6∈ p1.gteq] ‘∧’ [2 6∈ p1.less]) ‘∧’
([3 ∈ p1.in] ‘⇔’

118 5. From CSP-OZ-DC to Phase-Event-Automata

keep(tr , p3, 3) ‘∨’ enter(tr , p3, 3) ‘∨’ seep(tr , p1, 3)) ‘∧’
[c3 6∈ ∅] ‘∧’ [3 6∈ p1.wait] ‘∧’ [3 6∈ p1.gteq] ‘∧’ [3 6∈ p1.less])

= (keep(tr , p3, 1) ‘∨’ enter(tr , p3, 1) ‘∨’ seep(tr , p1, 1)) ‘∧’ [true] ‘∧’
‘¬ ’(keep(tr , p3, 2) ‘∨’ enter(tr , p3, 2) ‘∨’ seep(tr , p1, 2)) ‘∧’ [true] ‘∧’
‘¬ ’(keep(tr , p3, 3) ‘∨’ enter(tr , p3, 3) ‘∨’ seep(tr , p1, 3)) ‘∧’ [true] ‘∧’

= ([true] ‘∨’ [false] ‘∨’ [false]) ‘∧’
‘¬ ’([false] ‘∨’ A′ ‘∨’ A′) ‘∧’
‘¬ ’((c3 < 6 ‘∧’ B ′) ‘∨’ [false] ‘∨’ [false]) ‘∧’

= [true] ‘∧’ ‘¬ ’A′ ‘∧’ ‘¬ ’(c3 < 6 ‘∧’ B ′)
= ‘¬ ’A′ ‘∧’ (c3 ≥ 6 ‘∨’ ‘¬ ’B ′)

guard(tr , p2, ∅, p1) =
([1 ∈ p1.in] ‘⇔’

keep(tr , p2, 1) ‘∨’ enter(tr , p2, 1) ‘∨’ seep(tr , p1, 1)) ‘∧’
[c1 6∈ ∅] ‘∧’ [1 6∈ p1.wait] ‘∧’ [1 6∈ p1.gteq] ‘∧’ [1 6∈ p1.less]) ‘∧’
([2 ∈ p1.in] ‘⇔’

keep(tr , p2, 2) ‘∨’ enter(tr , p2, 2) ‘∨’ seep(tr , p1, 2)) ‘∧’
[c2 6∈ ∅] ‘∧’ [2 6∈ p1.wait] ‘∧’ [2 6∈ p1.gteq] ‘∧’ [2 6∈ p1.less]) ‘∧’
([3 ∈ p1.in] ‘⇔’

keep(tr , p2, 3) ‘∨’ enter(tr , p2, 3) ‘∨’ seep(tr , p1, 3)) ‘∧’
[c3 6∈ ∅] ‘∧’ [3 6∈ p1.wait] ‘∧’ [3 6∈ p1.gteq] ‘∧’ [3 6∈ p1.less])

= (keep(tr , p2, 1) ‘∨’ enter(tr , p2, 1) ‘∨’ seep(tr , p1, 1)) ‘∧’ [true] ‘∧’
‘¬ ’(keep(tr , p2, 2) ‘∨’ enter(tr , p2, 2) ‘∨’ seep(tr , p1, 2)) ‘∧’ [true] ‘∧’
‘¬ ’(keep(tr , p2, 3) ‘∨’ enter(tr , p2, 3) ‘∨’ seep(tr , p1, 3)) ‘∧’ [true] ‘∧’

= ([true] ‘∨’ [false] ‘∨’ [false]) ‘∧’
‘¬ ’((c2 < 4 ‘∧’ A′) ‘∨’ A′ ‘∨’ A′) ‘∧’
‘¬ ’((c3 < 6 ‘∧’ B ′) ‘∨’ (c2 ≥ 4 ‘∧’ B ′) ‘∨’ [false]) ‘∧’

= [true] ‘∧’ ‘¬ ’A′ ‘∧’ ‘¬ ’(B ′ ‘∧’ (c3 < 6 ‘∨’ c2 ≥ 4))
= ‘¬ ’A′ ‘∧’ ((c3 ≥ 6 ‘∧’ c2 < 4) ‘∨’ ‘¬ ’B ′)

The guards in figure 5.3 were further simplified by omitting ‘¬ ’A′, which
is already implied by the invariant of p1.

5.3. Translating DC 119

The following function computes the guard on the initial edge for each
location of the automaton p : PowerSet(tr).

init : Trace × ranPowerSet → L(V ′)

init(tr , p) =
if p.wait = p.in ∩ LB(tr)
∧ p.less = if tr(1).timeop = less then {1} else ∅
∧ p.gteq = {i : p.wait • tr(i).timeop = greaterequal

∧ (∀ j : 1..(i − 1) • tr(j).allowEmpty)}
then ‘

∧
’ i : dom tr •

([i ∈ p.in] ‘⇔’ tr(i).inv ‘∧’ ([i = 1 ∨ canseep(tr , p, i)]))
else [false]

In the initial location, all active phases with a lower bound must be in the
waiting set. The less flag for the first phase is set if and only if the phase has
a less bound. For all other phases with an upper bound, canseep(tr , p, i)
holds, so the clock is not yet started. The gteq flag must be set for all
phases with a greaterequal bound that can be entered immediately. This
is the case when all previous phases (if there are any) hold for the point
interval. If any of these conditions is violated, init(tr , p) is set to [false].
Otherwise a phase is active in the initial location if and only if its invariant
is satisfied and it is either the first phase or the seep condition holds.

The power set automaton A(tr) of a trace tr ∈ Trace is defined as
follows:

A(tr : Trace)
P == PowerSet(tr)
C == {i : UB(tr) ∪ LB(tr) • ci}
E == {p : P ; X : P(C); p′ : P | guard(tr , p,X , p′) 6= [false]

• (p, guard(tr , p,X , p′),X , p′)}
s : P → L(V)
I : P → L(C)
E0 == {p : P | init(tr , p) 6= [false] • init(tr , p) 7→ p}

∀ p : P • s(p) = ‘
∧

’{i : p.in • tr(i).inv} ‘∧’
‘
∧

’{i : dom tr \ p.in | canseep(tr , p, i) • ‘¬ ’ tr(i).inv}
∀ p : P • I (p) = ‘

∧
’{i : p.in | i ∈ p.wait ∨

(i ∈ UB(tr) ∧ ¬ canseep(tr , p, i)) •
ci ≤ tr(i).bound}

120 5. From CSP-OZ-DC to Phase-Event-Automata

The locations of the automaton are given by the schema PowerSet(tr)
as mentioned before. For each phase i with an upper or lower bound
there is a clock ci ∈ C . The edges are determined by the guard pred-
icate we just defined: If guard(tr , p,X , p′) is not equal to [false], the
edge (p, guard(tr , p,X , p′),X , p′) is added. Likewise for each location
p where init(tr , p) is not equal to [false] the corresponding initial edge
(init(tr , p), p) is in E0 . The state invariant s(p) makes sure that the
invariants of all active phases are satisfied and that all invariants of all
inactive phases that can be entered by the seeping rule are not satisfied.
The clock invariant I (p) checks the clocks for all waiting phases and for
all active phases with an upper bound. As mentioned earlier, the clock is
only checked for phases with an upper bound if ¬ canseep(tr , p, i) holds.

Note that guard(tr , p,X , p′) (respectively init(tr , p)) can often be simpli-
fied by taking the invariant of the new location s(p′) ∧ I (p′) (respectively
s(p)) into account. In fact, there is only one case where init(tr , p) 6= [false]
and init(tr , p) 6= s(p): if tr(1).inv 6= [true] then init(∅) = ¬ tr(1).inv .

Our next goal is to prove that the automaton is stuttering invariant.
Because of the seeping rule, no new locations can be entered by stuttering
steps. Whenever a phase can be entered by a stuttering step, there is no
entering event required and canseep holds. Hence, the phase was already
active before due to seeping. This is shown by the following auxiliary
lemma. It states that if a phase i is complete in location p, and the next
phase i + 1 can be entered without any events occurring, and the clock
invariant of location p holds strictly, the formula canseep(tr , p, i +1) holds.

Lemma 5.12. Let p be a location of the power set automaton and i ∈
dom tr some phase. Then

(∀ e : A • ¬ e) ∧ s(p) ∧ strict(I (p))
∧ complete(tr , p, i) ∧ tr(i + 1).entryEvents ⇒ canseep(tr , p, i + 1)

Proof. Proof by induction over i : If i 6∈ p.in then from complete(tr , p, i),
we have i > 1, tr(i).allowEmpty , tr(i).entryEvents, complete(tr , p, i − 1).
Thus canseep(tr , p, i) holds by the induction hypothesis. Moreover, from
tr(i).allowEmpty , we have tr(i).inv = [true] by definition of PhaseSpec.
With i 6∈ p.in and canseep(tr , p, i), we have s(p) = [false] by definition of
the power set automaton A(tr). This is a contradiction so i ∈ p.in.

If i ∈ p.in and i ∈ p.wait holds, then i ∈ LB(tr) holds, i. e., tr(i).timeop
is greater or greaterequal . Hence, ¬ tr(i).allowEmpty holds by defini-
tion of PhaseSpec. Since complete(tr , p, i) holds, i ∈ p.gteq holds and

5.3. Translating DC 121

complete(tr , p, i) = (ci >= tr(i).bound). However, strict(I (p)) requires
ci < tr(i).bound . Again, this is a contradiction. Therefore, i ∈ p.in \
p.wait .

From (∀ e : A • ¬ e) ∧ tr(i + 1).entryEvents follows

∅ |= tr(i + 1).entryEvents .

With i ∈ p.in \ p.wait , this yields canseep(tr , p, i + 1). 2

Lemma 5.13. The automaton is stuttering invariant: For each location
p ∈ P the following formula holds:

(∀ x : V • x = x ′) ∧ (∀ e : A • ¬ e) ∧ s(p) ∧ strict(I (p))
⇒ guard(p, g ,X , p) .

Proof. We prove for all i that each conjunct of guard(tr , p, ∅, p) holds.
The first conjunct

[i ∈ p.in] ‘⇔’ keep(tr , p, i) ‘∨’ enter(tr , p, i) ‘∨’ seep(tr , p, i)

is implied by the following formulae that we show below:

keep(tr , p, i) ‘⇔’ [i ∈ p.in] (5.4)
seep(tr , p, i) ‘⇒’ canseep(tr , p, i) ‘∧’ (tr(i).inv)′ (5.5)

enter(tr , p, i) ‘⇒’ canseep(tr , p, i) ‘∧’ (tr(i).inv)′ (5.6)
canseep(tr , p, i) ‘∧’ (tr(i).inv)′ ‘⇒’ [i ∈ p.in] (5.7)

If i 6∈ p.in then

keep(tr , p, i) =[i ∈ p.in] ‘∧’ ‘
∧

’{ev : tr(i).forbidden • ¬ ev}‘∧’

(tr(i).inv)′ ‘∧’
(if i ∈ UB(tr) ∧ ¬ canseep(tr , p, i) then

ci < tr(i).bound
else [true])

is false by definition. On the other hand, if i ∈ p.in then ‘
∧

’{ev :
tr(i).forbidden • ¬ ev} follows from (∀ e : A • ¬ e). The formula
(tr(i).inv)′ follows from s(p) and ∀ x : V • x = x ′. If i ∈ UB(tr) ∧

122 5. From CSP-OZ-DC to Phase-Event-Automata

¬ canseep(tr , p, i) then ci < tr(i).bound follows from strict(I (p)). This
proves (5.4).

Formula (5.5) follows directly from the definition of seep(tr , p, i). From
the definition of enter(tr , p, i) and lemma 5.12, we get (5.6):

enter(tr , p, i) ⇒ complete(tr , p, i − 1) ‘∧’ tr(i).entryEvents ‘∧’ (tr(i).inv)′

⇒ canseep(tr , p, i) ‘∧’ (tr(i).inv)′ .

Now assume that (tr(i).inv)′ and canseep(tr , p, i) hold. From s(p) and
∀ x : V • x = x ′, it follows that s(p)′ holds. If i 6∈ p.in holds, s(p)′ and
canseep(tr , p, i) would imply ¬ (tr(i).inv)′. Therefore, i 6∈ p.in leads to a
contradiction. This proves formula (5.7).

If i ∈ LB(tr) ∩ p.in the other conjuncts of guard(tr , p, ∅, p) are:

[ci ∈ ∅] ‘⇔’ ‘¬ ’ keep(tr , p, i) (5.8)
[i ∈ p.wait] ‘⇔’ [ci ∈ ∅] ‘∨’ ([i ∈ p.wait] ‘∧’ ci < tr(i).bound), (5.9)

[i ∈ p.gteq] ‘⇔’
if ci ∈ ∅ then [tr(i).timeop = greaterequal] ‘∧’ enter(tr , p, i)
else [i ∈ p.gteq ∧ i ∈ p.wait] ,

(5.10)

[i 6∈ p.less] . (5.11)

From (5.4) follows keep(tr , p, i) hence (5.8) holds because both sides are
false. From strict(I (p)), we have that i ∈ p.wait implies ci < tr(i).bound .
Thus, (5.9) holds. Because ci 6∈ ∅ and p.gteq ⊆ p.wait formula (5.10)
simplifies to

[i ∈ p.gteq] ‘⇔’ [i ∈ p.gteq] .

Finally, (5.11) is true because i ∈ LB(tr), and p.less ⊆ UB(tr) by defini-
tion of PowerSet(tr).

If i ∈ UB(tr)∩ p.in and ¬ canseep(tr , p, i) holds, then we need to show:

[ci ∈ ∅] ‘⇔’ enter(tr , p, i) ‘∨’ [canseep(tr , p, i)] , (5.12)
[i 6∈ p.wait] ‘∧’ [i 6∈ p.gteq] , (5.13)

[i ∈ p.less] ‘⇔’
if ci ∈ ∅ then [tr(i).timeop = less] ‘∨’ ‘¬ ’ enter(tr , p, i)
else [i ∈ p.less]) ,

(5.14)

From (5.6) and ¬ canseep(tr , p, i) follows that enter(tr , p, i) does not hold.
Hence (5.12) is true because both sides are false. From i ∈ UB(tr) and

5.3. Translating DC 123

p.gteq ⊆ p.wait ⊆ LB(tr), we have (5.13). Finally, formula (5.14) simplifies
to

[i ∈ p.less] ‘⇔’ [i ∈ p.less] ,

which is trivially true.
If neither i ∈ LB(tr) ∩ p.in nor i ∈ UB(tr) ∩ p.in ∧ ¬ canseep(tr , p, i)

we have from the invariant of PowerSet(tr), that i 6∈ p.wait ∧ i 6∈ p.gteq ∧
i 6∈ p.less. 2

Now, we prove that the power set automaton is also deterministic. This
is very useful: It guarantees that there is a run for each interpretation and
that all runs only differ in duration and the number of stuttering steps.

Lemma 5.14. The automaton is deterministic.

Proof. We prove the three parts of definition 4.20 separately:

1. For each valuation β, there is exactly one location p ∈ PowerSet(tr)
with β |= s(p) and β |= init(tr , p). This unique location corresponds
to the unique initial edge (init(tr , p), p) ∈ E0.

Location p can be constructed as follows: Start with p.in = p.wait =
p.less = p.gteq = ∅ and i = 1. Then execute the following steps:

(1) Add i to p.in if (and only if)

β |= tr(i).inv ‘∧’ [i = 1 ∨ canseep(tr , p, i)] (5.15)

holds. Note that canseep(tr , p, i) only depends on i −1 ∈ p.in \
p.wait , which has been computed before.

(2) Add i to p.wait if i ∈ p.in ∩ LB(tr) holds.

(3) Add i to p.gteq if i ∈ p.wait and tr(i).timeop = greaterequal
hold and tr(j).allowEmpty holds for all j < i .

(4) Add i to p.less if i = 1 and tr(1).timeop = less hold.

(5) Increase i and go to step (1) if i ≤ #tr holds.

This procedure gives us a state p such that β |= init(tr , p) holds.
Note that this state is unique. For example, if i is not added to p.in
in step (1) although (5.15) holds, init(tr , p) cannot hold for valuation
β, because it contains the conjunct

[i ∈ tr(i).inv] ⇔ tr(i).inv ‘∧’ [i = 1 ∨ canseep(tr , p, i)] .

124 5. From CSP-OZ-DC to Phase-Event-Automata

Similarly, if i is added to p.in although (5.15) does not hold. Step
(1) also guarantees that β |= s(p) holds.

If p is constructed as above, it is indeed a location that fulfils the
invariant of the schema PowerSet(tr). It was constructed such that
p.wait = p.in ∩LB(tr), p.gteq ⊆ p.wait , and if i ∈ p.less then i = 1,
1 ∈ UB(tr) and 0 6∈ p.wait \ p.less.

2. For each location p ∈ P and each pair of state valuations β1, β2 ∈
Val(V), Y ∈ P A, and γ ∈ Val(C) there is exactly one X ∈ P C
and one location p′ ∈ P such that β1, β

′
2,Y , γ |= guard(tr , p,X , p′)

holds. This gives the unique edge (p, guard(tr , p,X , p′),X , p′) ∈ E .
The set X and location p′ can be constructed as follows. Start with
X = p′.in = p′.wait = p′.less = p′.gteq = ∅ and i = 1. Then
execute the following steps:

(1) Add i to p′.in if and only if

β1, β
′
2,Y , γ |= keep(tr , p, i) ‘∨’ enter(tr , p, i) ‘∨’ seep(tr , p′, i)

holds. Note that seep(tr , p′, i) only depends on tr , i and i−1 ∈
p′.in \ p′.wait . The latter has already been computed.

(2) If i ∈ LB(tr) ∩ p′.in does not hold continue with step (7).

(3) Add ci to X iff ¬ keep(tr , p, i) holds.

(4) Add i to p′.wait if and only if:

β1, β
′
2,Y , γ |= [ci ∈ X] ‘∨’ ([i ∈ p.wait] ∧ ci < tr(i).bound) .

(5) Add i to p′.gteq if and only if

β1,β
′
2,Y , γ |=

if ci ∈ X then [tr(i).timeop = greaterequal] ‘∧’ enter(tr , p, i)
else [i ∈ p.gteq ∧ i ∈ p′.wait] .

(6) Go to step (10).

(7) If i ∈ UB(tr)∩p′.in ∧ ¬ canseep(tr , p′, i) does not hold continue
with step (10).

(8) Add ci to X iff enter(tr , p, i) ‘∨’ [canseep(tr , p, i)] holds.

5.3. Translating DC 125

(9) Add i to p′.less if and only if

β1,β
′
2,Y , γ |=

if ci ∈ X then [tr(i).timeop = less] ‘∨’ ‘¬ ’ enter(tr , p, i)
else [i ∈ p.less]) .

(10) Increase i and go to step (1) if i ≤ #tr .

To evaluate the conditions, the algorithm uses only the part of the set
X and state p′ that has been computed in the preceeding steps. Each
step of the algorithm corresponds to a conjunct of guard(tr , p,X , p′).
This conjunct evaluates to true if p′ and X were constructed as above.
Furthermore, if at some step a different value for p′ or X would
be chosen, the corresponding conjunct evaluates to false. Hence
this algorithm computes a unique solution for p′ and X such that
guard(tr , p,X , p′) is true.

The computed location p′ is indeed a valid location satisfying the
invariant of PowerSet(tr). If i 6∈ p′.in ∩ LB(tr) the algorithm skips
step (3–6), hence i 6∈ p′.wait . Thus, p′.wait ⊆ p′.in ∩ LB(tr). Simi-
larly, i is only added to p′.gteq in step (5) if ci ∈ X or i ∈ p′.wait . If
ci ∈ X , i was added to p′.wait in step (4). Hence, p′.gteq ⊆ p′.wait .
If i ∈ p′.less, then i was added in step (9). This step is only reachable
if i ∈ UB(tr)∩ (p′.in) and ¬ canseep(tr , p′, i) in step (7). The latter
implies i − 1 6∈ p′.in \ p′.wait ∨ ∅ 6|= tr(i).entryEvents, as required
by the invariant of PowerSet(tr).

3. The clock invariant I (p) is always a conjunction of ci ≤ tr(i).bound
by definition.

2

The following lemma shows that whenever complete(tr , p, i) holds, then
for the corresponding DC interpretation and interval, Prefix (i , tr) holds.
Furthermore, when a phase i is active (i ∈ p.in) then formula Prefix (i , tr)
holds, except that the condition ` ∼ tr(i).bound does not need to hold. If
the clock is active, the duration of that interval roughly equals the value
of the clock γn(ci) + tn . However, it may be smaller or larger if the clock
was reset too early or too late.

126 5. From CSP-OZ-DC to Phase-Event-Automata

Lemma 5.15. Given an interpretation I and a matching run

run = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn), . . . 〉

of the power set automaton. Then for all steps n of the run and all i ∈
dom tr:

1. If i ∈ pn .in then for some len > 0:

I,

[
0,

n∑
j=0

tj

]
|= Prefix (i − 1, tr) a tr(i).entryEvents a

dtr(i).inve ∧ ` = len ∧
∧

ev : tr(i).forbidden • � ev
(5.16)

Furthermore, the variable len can be chosen such that the following
side-conditions hold:

(a) If i ∈ LB and i 6∈ pn .wait then (5.16) holds for some len >
tr(i).bound.

(b) If i ∈ pn .wait then for all ε > 0, it holds for some len > γn(ci)+
tn − ε.

(c) If i ∈ pn .gteq it holds for len = γn(ci) + tn .
(d) If i ∈ UB ∧ canseep(tr , pn , i) then for all ε > 0, (5.16) holds

for some len < ε.
(e) If i ∈ UB ∧ ¬ canseep(tr , pn , i) then it holds for some len <

γn(ci) + tn + ε

(f) If i ∈ UB ∧ ¬ canseep(tr , pn , i) ∧ i 6∈ pn .less then it holds for
len = γn(ci) + tn .

2. If γn + tn ,Yn+1 |= complete(tr , pn , i) then

I,

[
0,

n∑
j=0

tj

]
|= Prefix (i , tr) .

Proof. We show both parts by simultaneous induction over n and i ; the
well-ordering used for induction is the component-wise ordering of (n, i).
Firstly, we show part 1 under the assumption that the induction hypothesis
holds for both parts of the lemma. Secondly, we show that part 2 is implied
by part 1.

5.3. Translating DC 127

1. We assume i ∈ pn .in.

Assume n = 1 and i = 1. The initial edge (init(tr , p1), p1) ∈ E0 is
taken by the automaton. Hence, β1 |= init(tr , p1) holds. Because
i ∈ p1.in, this implies β1 |= s(p1). Therefore, formula (5.16) holds
for len = t1. Since γ1(ci) = 0, we have len = γ1(ci) + t1. Hence, (c)
and (f) hold. Also len > γ1(ci) + t1 − ε and len < γ1(ci) + t1 + ε
for all ε > 0. Hence, (b) and (e). If i ∈ LB holds, we can deduce
i ∈ p1.wait because otherwise init(tr , p1) would be false. Hence, (a)
is vacuously true. Note that by definition, canseep(tr , p1, 1) never
holds. Hence, (d) is vacuously true.

Assume n = 1 and i > 1. The definition of init requires that
canseep(tr , p1, i) holds. Therefore, we have i − 1 ∈ p1.in \ p1.wait .
If i − 1 ∈ p1.less holds, the invariant I (p1) asserts that γ1(ci) + t1 ≤
tr(i).bound . Therefore, for each t with 0 < t < t1, γ1(ci) + t , ∅ |=
complete(tr , p1, i−1) holds. The induction hypothesis for part 2. and
n = 1 and i − 1 applied on the stuttering run

run ′ = 〈(p1,Y1, β1, γ1, t), (p1, ∅, β1, γ1 + t , t1 − t), . . . 〉

yields I, [0, t] |= Prefix (i − 1, tr). From canseep(tr , p1, i), we have
∅ |= tr(i).entryEvents. From β1 |= s(p1) and i ∈ p1.in, we have β1 |=
tr(i).inv . Therefore, (5.16) holds for len = t1 − t = γ1(ci) + t1 − t .

Consider the further conditions on len. Case (a) is vacuously true
since i ∈ LB implies i ∈ p1.wait by definition of init . For(b), choose
for ε > 0 some t < ε yielding len > γ1(ci) + t1 − ε. To prove (d),
choose some t > t1−ε yielding len < ε. Since canseep(tr , p1, i) holds,
(e) and (f) hold vacuously. If i ∈ p1.gteq , then by definition of init
for all j < i tr(j).allowEmpty hold. Thus, Prefix (i − 1, tr) holds on
the interval [0, 0] and (5.16) holds for len = t1 = γ1(ci) + t1. Hence,
(c) holds.

Now, assume n > 1. There is an edge (pn−1, g ,X , pn) of the automa-
ton with

βn−1, β
′
n , γn−1 + tn−1,Yn |= g .

For the power set automaton we have g = guard(tr , pn−1,X , pn). If
i ∈ pn .in then by definition of guard :

βn−1, β
′
n ,γn−1 + tn−1,Yn |=

keep(tr , pn−1, i) ∨ enter(tr , pn−1, i) ∨ seep(tr , pn , i)

128 5. From CSP-OZ-DC to Phase-Event-Automata

We distinguish the three cases:

keep If keep(tr , pn−1, i) holds then i ∈ pn−1. By induction hypoth-
esis

I,

[
0,

n−1∑
j=0

tj

]
|= Prefix (i − 1, tr) a tr(i).entryEvents a

(dtr(i).inve ∨ tr(i).allowEmpty) ∧

` = len ′ ∧
∧

ev : tr(i).forbidden • � ev
(5.17)

The formula keep(tr , pn−1, i) requires that no forbidden events
occur in Yn and that tr(i).inv holds in βn . Therefore, (5.16)
holds for len = len ′ + tn . It remains to be shown that len ′ can
be chosen such that len = len ′ + tn fulfils the side-conditions.
If i ∈ LB then ci 6∈ X by definition of guard . Thus, γn(ci) =
γn−1(ci) + tn−1. Since ci 6∈ X , guard(tr , p,X , p′) implies

[i ∈ p′.wait] ‘⇔’ [i ∈ p.wait] ‘∧’ ci < tr(i).bound .

If i 6∈ pn .wait , then either i 6∈ pn−1.wait , or i ∈ pn−1.wait and
γn−1 + tn−1) |= ci ≥ tr(i).bound . In the former case (5.17)
holds for some len ′ > tr(i).bound by (a). In the latter case, we
can choose ε = tn and (5.17) holds for some

len ′ > γn−1(ci) + tn−1 − tn ≥ tr(i).bound − tn .

Therefore, in both case len = len ′ + tn > tr(i).bound , which
means that (a) holds. If i ∈ pn .wait then i ∈ pn−1.wait by defi-
nition of guard . For each ε > 0 there is some len ′ > γn−1(ci) +
tn−1−ε = γn(ci)−ε. Then len > γn(ci)+ tn −ε. Therefore (b)
holds. If i ∈ pn .gteq then i ∈ pn−1.gteq by definition of guard .
Hence, the induction hypothesis yields len ′ = γn−1(ci)+ tn−1 =
γn(ci). Therefore, len = γn(ci) + tn , as required by (c).
Now consider i ∈ UB : Assume ¬ canseep(tr , pn , i) holds; the
other case is proven in section seep. Therefore, only (e) and
(f) have to be considered. The formula guard(tr , pn−1, i , pn)
implies

[ci ∈ X] ‘⇔’ enter(tr , pn−1, i) ‘∨’ [canseep(tr , pn−1, i)] . (5.18)

5.3. Translating DC 129

We consider the case ci ∈ X and ci 6∈ X separately.
If ci ∈ X , then γn(ci) = 0. If enter(tr , pn−1, i) holds the
property is proven in section enter. Otherwise, formula (5.18)
implies canseep(tr , pn−1, i). By induction hypothesis for each
ε > 0 there is a len ′ < ε such that (5.17) holds. This yields
len < tn +ε = γn(ci)+tn +ε. Thus, (e) holds. From ci ∈ X and
¬ enter(tr , pn−1, i) follows i ∈ pn .less by definition of guard .
Thus, (f) holds vacuously.
If ci 6∈ X then ¬ canseep(tr , pn−1, i) holds. Since ci is not reset
we have γn(ci) = γn−1(ci) + tn−1. The induction hypothesis
gives for each ε > 0 some len ′ < γn−1(ci)+ tn−1 +ε = γn(ci)+ε
with (5.17). Thus, len < γn(ci)+tn +ε holds, as required by the
condition (e). If additionally i 6∈ pn .less, then i 6∈ pn−1.less by
definition of guard . Therefore, the induction hypothesis yields
len ′ = γn−1(ci) + tn−1, which implies len = γn(ci) + tn . Thus,
the condition (f) holds.

enter If enter(tr , pn−1, i) holds then

γn−1 + tn−1,Yn |= complete(tr , pn−1, i − 1) .

By using the induction hypothesis for part 2. and n−1 and i−1,
we get [

0,

n−1∑
j=0

tj

]
|= Prefix (i − 1, tr) .

Furthermore, Yn |= tr(i).entryEvents and βn |= tr(i).inv hence
(5.16) holds for len = tn .
If i ∈ LB we can assume ¬ keep(tr , pn−1, i), as we proved the
other case above. By definition of guard , ci ∈ X and i ∈ pn .wait
hold. Hence (a) holds vacuously. We have len = tn = γn(ci)+tn
and len > γn(ci) + tn − ε for all ε > 0. Thus, (b) and (c) hold.
If i ∈ UB we assume ¬ canseep(tr , pn , i). The other case is
proved in section seep below. By definition of guard , ci ∈ X
holds. Therefore, len = tn = γn(ci) + tn . Thus, (f) holds.
Furthermore, len < γn(ci) + tn + ε for all ε > 0. Thus, (e)
holds.

seep From canseep(tr , pn , i), we have i − 1 ∈ pn .in \ pn .wait . If
i − 1 ∈ pn .less holds, the invariant I (pn) asserts that γn(ci) +

130 5. From CSP-OZ-DC to Phase-Event-Automata

tn ≤ tr(i).bound . Therefore for each t with 0 < t < tn : γn(ci)+
t , ∅ |= complete(tr , pn , i−1). The induction hypothesis for part
2. and n and i − 1 applied on the stuttering run

run ′ = 〈. . . , (pn−1,Yn−1, βn−1, γn−1, tn−1),
(pn ,Yn , βn , γn , t), (pn , ∅, βn , γn + t , tn − t), . . . 〉

yields I, [0,
∑n−1

j=0 tj + t] |= Prefix (i−1, tr). From seep(tr , pn , i)
follows ∅ |= tr(i).entryEvents and βn |= tr(i).inv . Therefore,
(5.16) holds for len = tn − t .
If i ∈ LB holds, assume keep(tr , pn−1, i) and enter(tr , pn−1, i)
both do not hold (these cases were examined before). By defini-
tion of guard , ci ∈ X , i ∈ pn .wait , and i 6∈ pn .gteq hold. Hence
(a) and (c) hold vacuously. From ci ∈ X follows γn(ci) = 0.
For each ε > 0, t can be chosen such that 0 < t < ε and t < tn .
Then, len = tn − t > γn(ci) + tn − ε. Hence, (b) holds.
If i ∈ UB , for each ε > 0, t can be chosen such that tn − ε <
t < tn . This yields len = tn − t < ε. Hence, (d) holds. Since
canseep(tr , pn , i) holds, (e) and (f) hold vacuously.

2. We assume γn + tn ,Yn+1 |= complete(tr , pn , i). If i 6∈ pn holds, the
definition of complete requires that complete(tr , pn , i − 1) holds, so
by the induction hypothesis I, [0,

∑n
j=1 tj] |= Prefix (i − 1, tr) holds.

Also Yn+1 |= tr(i).entryEvents and tr(i).allowEmpty hold, which
yields

I,

[
0,

n∑
j=1

tj

]
|= Prefix (i , tr) .

Otherwise, i ∈ pn .in and by 1. (5.16) holds. We need to show that
the duration of the last interval satisfies len tr(i).timeop tr(i).bound .

If i ∈ LB and i 6∈ pn .wait , then len > tr(i).bound by 1(a). If i ∈
pn .wait holds, i ∈ pn .gteq must hold as otherwise complete(tr , i , pn)
would be [false]. Therefore tr(i).timeop = greaterequal and by (c)
len = γn(ci) + tn . From γn + tn ,Yn |= complete(tr , pn , i) follows
len ≥ tr(i).bound .

If i ∈ UB and canseep(tr , pn , i) holds, then by (d) (5.16) holds for
some len < ε := tr(i).bound . If ¬ canseep(tr , pn , i) and i ∈ pn .less,
then by definition of complete we have (γn(ci) + tn) < tr(i).bound .

5.3. Translating DC 131

For ε := tr(i).bound − (γn(ci) + tn) > 0 there is by (e) some len <
γn(ci) + tn + ε = tr(i).bound such that (5.16) holds. The remaining
case is ¬ canseep(tr , pn , i) and i 6∈ pn .less. Then tr(i).timeop =
lessequal . From the clock invariant I (pn) we have γn(ci) + tn ≤
tr(i).bound . By (f) (5.16) holds for len = γn(ci) + tn ≤ tr(i).bound .

2

Now, we show the reverse direction: If I, [0,T] |= Prefix (i , tr), the last
configuration of the corresponding run satisfies complete(tr , pn , i). The
following auxiliary lemma shows this for the last interval. If

I, [b, e] |= dtr(i).inve ∧
∧

ev : tr(i).forbidden • � ev

holds, and for the location pm corresponding to b, i ∈ pm .in holds and
some timing constraints are fulfilled, then complete(tr , pn , i) holds for the
location pn corresponding to e.

Lemma 5.16. Let I be an interpretation and let

run = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn), . . . 〉

be a matching run. Let m ≤ n be some positions in run and i ∈ dom tr a
trace element. Assume

I,

[
m−1∑
j=0

tj ,
n∑

j=0

tj

]
|= dtr(i).inve ∧

∧
ev : tr(i).forbidden • � ev

(5.19)

i ∈ pm .in (5.20)

i ∈ pm .gteq ⇒ γm(ci) +
n∑

j=m

tj ≥ tr(i).bound

(5.21)

i ∈ pm .wait \ pm .gteq ⇒ γm(ci) +
n∑

j=m

tj > tr(i).bound

(5.22)

i ∈ UB(tr) ⇒
n∑

j=m

tj ≤ tr(i).bound (5.23)

132 5. From CSP-OZ-DC to Phase-Event-Automata

i ∈ UB(tr) ∧ ¬ canseep(tr , pm , i) ⇒ γm(ci) +
n∑

j=m

tj ≤ tr(i).bound

(5.24)

i ∈ pm .less ⇒ γm(ci) +
n∑

j=m

tj < tr(i).bound

(5.25)

Then (γn + tn),Yn+1 |= complete(tr , pn , i).

Proof. If m = n then we can show that complete(tr , pn , i) holds for (γn +
tn),Yn+1: From the premise have i ∈ pn .in. If i ∈ pn .wait \ pn .gteq
then γn(ci) + tn > tr(i).bound . However, the invariant of pn states
ci ≤ tr(i).bound , which is a contradiction. Thus i 6∈ pn .wait \ pn .gteq
holds. If i ∈ pn .gteq , then γn(ci) + tn ≥ tr(i).bound as required by
complete(tr , pn , i). If i ∈ pn .less, then γm(ci) + tn < tr(i).bound as de-
manded by complete(tr , pn , i). Otherwise complete(tr , pn , i) = [true].

If m < n, we show that the premises also hold for m + 1, then the
conclusion follows by induction over n−m. The premises (5.19) and (5.23)
obviously still hold for m + 1.

From (5.19) we have Ym |= ‘
∧

’{tr(i).forbidden • ¬ ev} and βm+1 |=
tr(i).inv . If i ∈ UB(tr) ∧ ¬ canseep(tr , pm , i), then γm(ci) + tm <
γm(ci) +

∑n
j=m tj ≤ tr(i).bound . So

βm , β′m+1,Ym , γm(ci) + tm |= keep(tr , pm , i). (5.26)

With the definition of guard(tr , pm ,X , pm+1) thus (5.20) for m + 1.
If i ∈ LB(tr) then also from (5.26) and the definition of guard ci 6∈ X ,

so

γm(ci) +
n∑

j=m

tj = γm+1(ci) +
n∑

j=m+1

tj

Also i ∈ pm+1.wait ⇒ i ∈ pm .wait and i ∈ pm+1.gteq ⇔ i ∈ pm .gteq ∧ i ∈
pm+1.wait hence (5.21) and (5.22) hold for m + 1. For i 6∈ LB(tr) these
implications hold trivially.

If i ∈ UB(tr) ∧ ¬ canseep(tr , pm+1, i), there are two cases: If ci ∈ X
then γm+1(ci) +

∑k
j=m+1 tj =

∑k
j=m+1 tj <

∑n
j=m tj ≤ tr(i).bound . If

ci 6∈ X , then ¬ canseep(tr , pm , i) holds, thus (5.24). If i ∈ pm+1.less, then
i ∈ pm .less. Thus (5.25) is also valid. 2

5.3. Translating DC 133

Lemma 5.17. Given an interpretation I and a matching run

run = 〈(p1,Y1, β1, γ1, t1), . . . 〉

of the power set automaton. Let i ∈ dom tr be some phase and n some step
of the run. If

I,

[
0,

n∑
j=0

tj

]
|= Prefix (i , tr) (5.27)

then
(γn + tn),Yn+1 |= complete(tr , pn , i) (5.28)

Proof. This is proven by induction over i . For i = 0 we have Prefix (0, tr) =
(` = 0), so (5.27) never holds (not even for n = 0) thus the lemma is true.

Induction step: Assume i > 0 and the implication holds for i−1. Because
of (5.27) and the inductive definition of Prefix (i , tr) there is a time t with
0 ≤ t ≤

∑n
j=0 tj and

I, [0, t] |= Prefix (i − 1, tr) (5.29)

I,

[
t ,

n∑
j=0

tj

]
|= tr(i).entryEvents a (dtr(i).inve ∨ tr(i).allowEmpty) ∧

` tr(i).timeop tr(i).bound ∧∧
ev : tr(i).forbidden • � ev

(5.30)

We now distinguish three cases:

t = 0: Our goal is to show that the premises of lemma 5.16 are fulfilled for
m = 0: From (5.30) follows the premise (5.19).

From equation (5.29) we can conclude tr(j).allowEmpty , hence the
phase invariant tr(j).inv is [true]. Also ∅ |= tr(j).entryEvents holds
for all j < i . This implies j ∈ p0.in for all j < i (by induction over
j). Because of (5.30) we have β0 |= tr(i).inv , so i ∈ p0.in.

If tr(i).timeop = greaterequal then i ∈ p0.gteq and the length of
the interval in (5.30),

∑n
j=0 tj , is greater or equal tr(i).bound . If

tr(i).timeop = greater then i ∈ p0.wait \ p0.gteq and
∑n

j=0 tj >
tr(i).bound . With γ0(ci) = 0 we have the corresponding premises
(5.21) and (5.22).

134 5. From CSP-OZ-DC to Phase-Event-Automata

If i ∈ UB(tr) then from (5.30) we have
∑n

j=0 tj ≤ tr(i).bound .

If i ∈ UB(tr) ∧ ¬ canseep(tr , p0, i), then
∑n

j=0 tj ≤ tr(i).bound .
Also i = 1 (otherwise canseep(tr , p0, i) holds). Thus i ∈ p0.less ⇔
tr(i).timeop = less. Thus if i ∈ p0.less, then

∑n
j=0 tj < tr(i).bound .

This gives the premises (5.24) and (5.25).

All premises of lemma 5.16 are fulfilled, which implies (5.28).

t =
∑n

j=0 tj : From the induction hypothesis and (5.29) we can conclude

(γn + tn),Yn+1 |= complete(tr , pn , i − 1) .

From (5.30) we get tr(i).allowEmpty and Yn+1 |= tr(i).entryEvents,
thus (γn + tn),Yn+1 |= complete(tr , pn , i).

0 < t <
∑n

j=0 tj : We can assume that there is step m at time t , with∑m−1
j=0 tj = t , as otherwise we can insert a stuttering step at ex-

actly this time in the run, which will not affect the property we want
to show. We now show that for this m the premises of lemma 5.16
are fulfilled.

From (5.30) we have Ym−1 |= tr(i).entryEvents and βm |= tr(i).inv ,
so

βm−1, β
′
m ,Ym−1, γm−1(ci) + tm−1 |= enter(tr , pm−1, i). (5.31)

So from the definition of guard(tr , pm−1,X , pm) we have i ∈ pm .

If i ∈ LB(tr) then obviously
∑n

j=m tj ≥ tr(i).bound , so (5.21) holds.
If i ∈ pm .wait \ pm .gteq , then either ci 6∈ X and thus γm(ci) +∑n

j=m tj >
∑n

j=m tj ≥ tr(i).bound , or ci ∈ X and because of (5.31)
also tr(i).timeop 6= greaterequal . Therefore

∑n
j=m tj > tr(i).bound .

In any case (5.22) holds.

If i ∈ UB(tr) from (5.30)
∑n

j=m tj ≤ tr(i).bound . Thus premise
(5.23) holds.

If i ∈ UB(tr) ∧ ¬ canseep(tr , pm , i) then we have from (5.31) ci ∈ X ,
thus γm(ci) = 0. With (5.30) we have (5.24). Also from (5.31) if
i ∈ pm .less then tr(i).timeop = less, so (5.25) holds.

All premises of lemma 5.16 are fulfilled, thus (5.28) holds.

2

5.3. Translating DC 135

The following corollary concludes this section by summarising the corre-
lation of the DC formula Prefix (i , tr) and the formula complete(tr , pn , i)
applied on the current location pn of the power set automaton. This result
is used in the next chapter to prove the correctness of translation of the
DC formulae.

Corollary 5.18. Given an interpretation I and a matching run

run = 〈(p1,Y1, β1, γ1, t1), . . . 〉

of the power set automaton. Then for all phases i ∈ dom tr and for all
steps n of the run:

I,

[
0,

n∑
j=0

tj

]
|= Prefix (i , tr)

if and only if
(γn + tn),Yn+1 |= complete(tr , pn , i)

Proof. Follows from lemmas 5.15 and 5.17 2

5.3.2. Creating the Accepting Automaton

The automaton created in the last section is deterministic and thus accepts
every interpretation. However, when translating the DC part of a CSP-
OZ-DC class we need an automaton A that implements F , i. e., it accepts
exactly those interpretations I that satisfy the DC formula F :

I |= A ⇔ I |= F

The formula F is given as a counterexample trace ¬ (φ1
a · · · a φn

a

true). Although we require that each counterexample formula ends with a
true phase, this does not affect the expressiveness of the counterexample
formula class. If a formula does not already end with a true-phase, it can
be added without changing the interpretations that satisfy F :

I |= ¬ (φ1
a · · · a φn)

⇔∀ t : Time • I, [0, t] 6|= (φ1
a · · · a φn)

⇔∀ t ′ : Time • ∀ t : Time | t < t ′ • I, [0, t] 6|= (φ1
a · · · a φn)

136 5. From CSP-OZ-DC to Phase-Event-Automata

⇔∀ t ′ : Time • I, [0, t ′] 6|= (φ1
a · · · a φn

a true)

⇔I |= ¬ (φ1
a · · · a φn

a true)

We build the implementing automaton by constructing the power set
automaton Afull and omitting all locations for which the last true-phase
is active. I. .e., the locations p with #tr ∈ p.in are omitted from Afull to
create the implementing automaton A. The following corollary proves that
the construction is correct.

Lemma 5.19. Let Afull be the power set automaton and let A the automa-
ton Afull where all phases with #tr ∈ p.in are removed. Then

I, [0, t] |= F implies I, [0, t] |= A

and
I, [0, t] |= A implies ∀ t ′ : Time | t ′ < t • I, [0, t ′] |= F

Proof. Since the last phase of tr is a true phase without any bounds,
#tr ∈ p.in implies that complete(tr , p,#tr) = [true] holds.

For the first implication, assume I, [0, t] |= F . As Afull is deterministic
there is a run run of Afull of duration t and length #run = n that matches
I. This run can also be extended by one step to a run run ′ of duration
t + tn+1. By corollary 5.18 we have for n:

(γn + tn),Yn+1 6|= complete(tr , pn ,#tr) (5.32)

Since F ends with a true-phase it also holds for all subintervals [0, t ′] for
all t ′ < t . So equation 5.32 holds for any i ≤ n. Hence, #tr 6∈ pi .in
because otherwise formula complete(tr , pi ,#tr) is true. So all locations pi

that occur in run are also present in A. Therefore run is a run of A and
thus I, [0, t] |= A holds.

For the second implication, assume I, [0, t] |= A and run is an accepting
run that matches I. For t ′ < t insert a stuttering step into run at time t ′

if there is not already a step at this time. Then there is some n < #run
with

∑n
j=0 tj = t ′. We now show that

γn + tn ,Yn+1 6|= complete(tr , pn ,#tr)

and thus I, [0, t ′] |= F by corollary 5.18. We show this by contradiction:
Assume that γn + tn ,Yn+1 |= complete(tr , pn ,#tr) holds. Since pn is

a location of A, we have #tr 6∈ pn .in, so by definition of complete for the

5.3. Translating DC 137

above valuation complete(tr , pn ,#tr − 1) and tr(#tr).entryEvents hold.
Since tr(#tr).inv is true this means that enter(tr , p,#tr) holds under the
valuations βn , γn + tn ,Yn+1, β

′
n+1. Hence for the next location pn+1 we

have #tr ∈ pn+1.in. However, pn+1 is a location of A, so #tr 6∈ pn+1.in.
2

The following corollary proves the soundness of the translation for Du-
ration Calculus formulae.

Corollary 5.20 (Soundness of DC Translation). Let A be defined as in the
previous lemma. Then A implements F (A =̂ F).

Proof. If I |= A, then I, [0, t] |= A for all t . By the previous lemma, we
have I, [0, t ′] |= F for all t ′ < t . Since t is arbitrary, so is t ′. Hence, I |= F .

If I |= F , then I, [0, t] |= F for all t . By the previous lemma I, [0, t] |= A
for all t . Hence, I |= A. 2

If the final true-phase is immediately preceded by a phase with ≥ bound
without any events specification in between, i. e., tr(#tr).entryEvents =
true, then the clock invariant for all phases with #tr − 1 ∈ p.gteq is
changed from c ≤ tr(#tr − 1).bound to c < tr(#tr − 1).bound . This
change prevents the automaton from ending in a timelock.

Example 5.21. For the formula ¬ (true a dAe ∧ ` ≥ 2 a true), the full
power set automaton is:

{1}
¬ A

{1, 2≥}
A

c2 ≤ 2

{1, 3}
¬ A

{1, 2≥, 3}
A

c2 ≤ 2

{1, 2, 3}
A

c2 := 0

c2 < 2

c2 ≥ 2c2 ≥ 2

c2 := 0
c2 ≥ 2

138 5. From CSP-OZ-DC to Phase-Event-Automata

If we just omit all locations with 3 ∈ p.in (the second row), the resulting
automaton would have a deadlock. If the automaton is in location {1, 2≥}
and c2 is equal to 2, the guard of the only remaining outgoing edge is not
satisfied but the location must be left due to the invariant. We therefore
have to change the clock invariant according to the algorithm above and
the resulting automaton does not allow the clock c2 reaching the value 2:

{1}
¬ A

{1, 2≥}
A

c2 < 2

c2 := 0

c2 < 2

In the last example the resulting automaton was less than half the size
of the power set automaton. This is typical for the power set construc-
tion. Therefore, one should not generate the full power set automaton but
already omit the locations with #tr ∈ p.in, as these are removed anyway.

5.3.3. Case Study: Elevator

The case study of the elevator contains the following two DC-formulae:

¬ 3(l passed a ` ≤ 3 a l passed)

¬ 3(dcurrent 6= goale a (dcurrent = goale ∧ ` ≥ 2 ∧ � stop))

Both formulae are in counterexample trace form (if the eventually oper-
ator is expanded) and end with a true phase. The expanded form is:

¬ (true︸ ︷︷ ︸
1

a l passed a ` ≤ 3︸ ︷︷ ︸
2

a l passed a true︸ ︷︷ ︸
3

)

¬ (true︸ ︷︷ ︸
1

a dcurrent 6= goale︸ ︷︷ ︸
2

a

(dcurrent = goale ∧ ` ≥ 2 ∧ � stop)︸ ︷︷ ︸
3

a true︸ ︷︷ ︸
4

)

The automaton for the first formula is as follows.

5.4. Discussion and Related Work 139

{1}
true

{1, 2≤}
true
c2 ≤ 3

¬ passed ¬ passed

passed , c2 := 0

¬ passed ∧ c2 ≥ 3

In the second DC formula the true-phase is preceded by a phase with
≥ bound. Therefore, the invariant of the location containing 3≥ is made
strict. When applying the power set construction and simplifying the re-
sult, the following automaton is produced:

{1}
current = goal

{1, 2}
current 6= goal

{1, 2, 3≥}
current = goal

c3 < 2

¬ stop

c3 := 0stop

5.4. Discussion and Related Work

The main contribution of this chapter is the translation from a DC coun-
terexample formula to a phase event automaton. The constructed au-
tomaton accepts exactly those traces that satisfy the counterexample for-
mula. Thus, it provides an operational semantics for this formula. The au-
tomaton works like a security automaton, which was introduced by Schnei-
der [Sch00]. A security automaton runs in parallel to the target system,
restricting the permitted executions. In this case, an execution is permitted
if it satisfies the counterexample formula.

The class of counterexample formulae was chosen, because they are ex-
pressive enough to cover all DC implementables (c. f. lemma 2.2). There
is a fully developed theory on how implementables can be obtained from
general DC specifications [Rav94]. The counterexample formulae are more

140 5. From CSP-OZ-DC to Phase-Event-Automata

general than implementables. In [Tap01] the predicative semantics of phase
automata is defined as a conjunction of counterexample formulae. Our ex-
tension of counterexample formula allows specification of timing behaviour
for events, which is not directly possible with implementables. We do not
allow exact bounds in counterexample formulae. However, in most cases
where an exact bound ` = t occurs, it can be replaced by ` > t . This was
used to rewrite the synchronisation pattern as a counterexample trace.

In [HO02b] we extended the set of DC implementables by introducing
six new patterns to specify properties involving events. For example, the
leads-to pattern

dQe t−→
Y

dRe

states that, whenever Q holds for t seconds and no event Y occurs during
this interval, Y must occur and the state expression R must be satisfied.
All six patterns can be represented as counterexample formulae. For ex-
ample, the leads-to pattern can be reformulated as

dQe t−→
Y

dRe ≡¬ 3(dQe ∧ ` ≥ t ∧ �Y a 6 lY)

∧ ¬ 3(dQe ∧ ` ≥ t ∧ �Y a d¬ Re)

Therefore, our new approach is more general. In the old approach the
target automaton created from the CSP-OZ part was modified, to add the
timing behaviour. For each pattern a different algorithm exists. This com-
plicates correctness proofs for this construction. In [HO02b] we presented
the algorithm for the leads-to pattern, but did not show its correctness.

Tapken [Tap01] gives a translation for each DC implementable formula
pattern into phase automata. He provides a translation for each pattern,
which he proves separately. His automata are non-deterministic. Thus,
for each interpretation satisfying the implementable there is an accepting
run, but not every run matching the interpretation can be extended to an
accepting run. Tapken does not consider any events.

In [Die99] a translation from a set of DC implementables into PLC-
Automata is presented. PLC-Automata [Die01] can be directly translated
into programs running on hardware devices called Programmable Logic
Controllers (PLC). The translation assumes that some observables are in-
puts, controlled by the environment, and some are outputs, fully controlled
by the automaton. The resulting automata are deterministic except for
their reaction time, which is bounded by a maximum delay ε. If the set of

5.4. Discussion and Related Work 141

implementables is inconsistent or requires an infinitely small reaction time,
the algorithm flags an error. All runs of the translated automaton satisfy
all implementables, but not all runs that satisfy the implementables can
be performed by the automaton.

In [BLR95] the authors give a translation from a Duration Interval Logic
(DIL) to linear hybrid automata. They translate formulae of the shape
ϕ = 2(lπ a (` > c) ⇒ φ), which they call Control Design Formulas
(CDF). The formula φ is a sequence of phases µ1 ∧ ξ1

a · · · a µn ∧ ξn ,
where µi is of the form lπ1 ∧ 6 lπ2

a dπe. The formulae ξi can restrict the
length of the interval, e. g., ` ∼ t . Additionally, they may constrain the
duration of state expressions to

∑
j (kj · ∫ Pj) ∼ c. Note that a CDF ϕ is

equivalent to

¬ 3(lπ a ¬ (µ1 ∧ ξ1
a · · · a µn ∧ ξn) ∧ ` > c) .

To avoid the problems with non-deterministic automata the authors re-
quired that the formulae are overlap-free, which roughly means that adja-
cent phases cannot hold at the same time. They also require µ1

a · · · a µn

to be π-alternation-free, which means that the event π cannot occur in this
formula. These restrictions guarantee that the resulting automaton is de-
terministic. In CDF, equality in length constraints and constraints on
durations ∫ P are allowed. Thus, not all CDF formulae can be translated
by our algorithm. On the other hand, due to the restricting to overlap-free
and π-alternation-free formulae, Bouajjani, Lakhnech and Robbana cannot
handle the counterexample formulae that occur in the specification of the
elevator; these formulae do not have a unique event π that only occurs at
the beginning of the formula.

142

143

6. Model Checking

Contents
6.1. Implementation of Phase Event Automata 144

6.1.1. Representation of Formulae 144

6.1.2. Computing the Power Set Automaton 146

6.2. Reachability and Phase Event Automata 149

6.3. Translation to Uppaal Automata 151

6.3.1. Case Study: Audio Protocol 154

6.4. A Constraint-based Semantics for PEA 159

6.4.1. Transition Constraint Systems 160

6.4.2. Translation of PEA to TCS 161

6.4.3. Bounded Model Checking 165

6.4.4. ARMC . 166

6.4.5. Case Study: Elevator 167

6.5. Related Work . 171

6.5.1. Audio Protocol 171

6.5.2. Model Checking Duration Calculus 172

In this chapter, we present different methods to automatically verify
CSP-OZ-DC specifications. The methods are based on translation into
phase event automata. In the first section, we present the implementa-
tion of the power set construction. This is the most difficult part of the
translation process. Doing this manually is very error-prone and thus not
desirable. Then, we show that the general reachability problem for phase
event automata is not decidable. By using abstraction techniques, model
checking is still possible in many cases: we present a translation to Uppaal
by abstracting from the state variables. Finally, we give a translation into
transition constraint systems. These are first order formulae defining the
transitions and initial states. There is a model checker ARMC, which can
handle infinite state systems given as transition constraint systems. We
evaluate this model checker for our phase event automata.

144 6. Model Checking

6.1. Implementation of Phase Event Automata

In this section we sketch our implementation of the power set construction.
Although complete formulae were given in the last chapter, some further
work is necessary to implement an efficient tool that computes the automa-
ton automatically. Furthermore, an efficient representation of the formulae
used for guards and invariants in the automaton is necessary.

6.1.1. Representation of Formulae

To implement a tool to create and manipulate phase event automata we
need an efficient representation of formulae over states, events and clocks.
We use binary decision diagrams (BDD)[Bry86]. These decision diagrams
are directed acyclic graphs consisting of terminal and non-terminal nodes.
There are only two terminal nodes, namely true and false that represent
themselves. A non-terminal node N is labelled with a boolean variable
N .var and has two successor nodes N .false and N .true. The formula rep-
resented by node N can be calculated recursively as F (N) = ifN .var then
F (N .true) else F (N .false). Since the graphs are acyclic, the recursion
terminates.

More precisely we use shared reduced ordered BDD (ROBDD) that have
some side conditions. There is a total variable ordering < and for each non-
terminal node N and each non-terminal child C = N .false or C = N .true,
the variables satisfy the ordering N .var < C .var . Furthermore, in a graph
there are no two nodes representing the same formula. This also implies
that the two children of a node are not identical, as otherwise the formula
represented by the node is the same as the formula represented by its child.

Only formulae over boolean variables can be directly encoded into BDDs.
To encode formulae over clocks an extension of BDDs such as interval
decision diagrams (IDD) [ST98] is useful. In IDDs a non-terminal node is
labelled with a integer variable and a list of boundaries b1 < · · · < bn . It has
multiple children c0, . . . , cn . The child ci is used if the value of the variable
lies in the half-open interval [bi , bi+1), with b0 = −∞ and bn+1 = +∞.
These intervals build a disjoint partition of the variable domain. Although
the [ST98] defines IDDs only for variables with integer domain, they can be
extended in a straightforward manner for variables over reals to represent
clock constraints. The boundaries of the intervals need to be represented
exactly, so they should be integers or rationals. Furthermore, an additional
bit is needed for every boundary to determine whether that value belongs

6.1. Implementation of Phase Event Automata 145

A

B

c2

c3

truefalse

falsetrue

false true

< 4≥ 4

< 6 ≥ 6

Figure 6.1.: Decision Diagram representation of ¬ A∧(B∨(c3 ≥ 6∧c2 < 4))

to the left or right interval.
Unfortunately, the standard BDD libraries are not easy to extend to

IDDs. The internal data structure allows only two children, the nodes are
often only represented as an integer representing the index of the boolean
variable. For this reason we needed to implement a new decision diagram
package, called Constraint Decision Diagram (CDD), that allows nodes
with general constraints and more than one successor. This package facil-
itates creating custom nodes as those necessary for IDD. Different types
of nodes can be implemented by extending the Decision class using the
object-oriented programming paradigm. Besides Boolean decisions, a de-
cision can also be a real variable that is checked against interval bounds.
Figure 6.1 gives an example for such a decision diagram. Of course, the
CDD package cannot be as efficient as a specialised BDD package, nonethe-
less it is fast enough to calculate automata with several thousand guards
in few seconds.

A common technique for representing decision diagrams is to share sub-
diagrams between different formulae. This is extremely useful for the power
set construction of section 5.3 where large sub-formulae, e. g., the keep,
enter and seep formulae, are needed for many different edges of the au-
tomaton. Instead of storing many different copies of the same formula

146 6. Model Checking

1 private static UnifyHash<CDD> unifyHash;
2 public static CDD create(Decision decision, CDD[] children) {
3 int hashcode = calculateHashCode(decision, children);
4

5 for (cdd : unifyHash.iterateHashCode(hashcode)) {
6 if (cdd.equals(decision , children))
7 return cdd;
8 }
9 cdd = new CDD(decision, children);

10 unifyHash.put(hashcode, cdd);
11 return cdd;
12 }

Figure 6.2.: Java code to manage Constraint Decision Diagrams

the previously created formulae are stored and reused whenever they are
needed. A prerequisite for sharing these structures is to make them read-
only. Instead of manipulating the existing structures, every operation cre-
ates a new CDD and returns it. Whenever a new node is needed, it is
created by a special function, c. f. figure 6.2 that checks, if the same node
already exists. If this is the case the existing node is returned, otherwise a
new node is created. This design principle is also known as the fly-weight
design pattern [GHJV95].

The function that creates the objects first computes a hash code for the
new node in line 3. Then it iterates all previously created nodes from
unifyHash with the same hash code, c. f. lines 5–8. If a node with the same
data is found it is returned in line 7. Otherwise a new node is created,
added to unifyHash, and returned.

6.1.2. Computing the Power Set Automaton

In section 5.3, we defined the construction of a power set automaton for
a given trace. Implementing it directly as stated there is not feasible for
the following reasons. For a counterexample trace of length n, the power
set automaton has at least 2n locations in PowerSet(tr). It has at most
4n locations if all phases have a greater-equal bound, as each phase can
be waiting with or without gteq flag, it can be active and not waiting or
it is not active at all. The number of edges grows quadratically with the

6.1. Implementation of Phase Event Automata 147

number of locations and exponentially with the length of the trace. Doing
the construction naively would require up to 4n ·4n ·2n = 25n computations
of the guard function for each location, although most of the computation
return an unsatisfiable guard. Even for short traces of length 4 this gives
millions of computations.

However, most locations are not reachable and most of the guards are
false. Thus, they can be omitted. Also when building the accepting au-
tomaton from section 5.3.2, further locations can be omitted. Therefore,
we build the reachable locations on the fly, starting with the initial loca-
tions and only adding a new location if it is reachable from a previously
built location. However, from a reachable location, we still need to consider
outgoing edges to all possible locations. Hence, we need a way to identify
those successor locations for which the guard is satisfiable.

The guard function is a conjunction ranging over the number of phases in
the trace. The first i conjuncts only depend on the first part of the successor
location, i. e., the value of j ∈ p′.in, p′.wait , p′.gteq , p′.less for j ≤ i . This
suggests to compute the reachable successor location and the corresponding
guard function in parallel. A recursive algorithm is sketched in Figure 6.3.
The procedure is called with i = 1, an empty successor location p′ = ∅, an
empty reset set X = ∅, and guard = true. The procedure computes the
partial guard up to phase i for the cases p′, p′ ∪ {i}, p′ ∪ {i≥}, p′ ∪ {i>},
and p′∪{i<} and for X and X ∪{c[i]}. For each combination of successor
location and reset set that has a satisfiable guard, the procedure calls itself
with increased i . Thus, the guard is recursively computed for all possible
values of p′ and X . If the guard becomes unsatisfiable, e. g., because a
phase cannot be entered, this is checked at the beginning of the method
and the computation is aborted in lines 2–3. Thus, it only proceeds with
values for p′ and X that can be extended to reachable successor locations.

In lines 5–9 it is checked if the location has been completely built. In this
case, the successor location p′ is added, unless it contains the last phase of
the trace. Thus, this function computes the accepting automaton instead
of the full power set automaton. If the successor location was seen for the
first time it is also added to the list of pending locations.

The functions enter and keep can be computed beforehand. Only seep
needs to be computed as it depends on the partial p′. It only depends on
the first part of the successor location. It can be computed in line 12.

The function now recursively calls itself for the different possibilities of p′

and X . If i 6∈ p′.in, then the guard function can be simplified to ¬ (keep ∨
enter ∨ seep) ∧ ci 6∈ X . Therefore, the reset set X does not change and

148 6. Model Checking

1 procedure buildSuccs(i, p, p′, X, guard)
2 if (guard = false) /∗ abort if guard is not satisfiable ∗/
3 return;
4

5 if (i > tr. length) /∗ check if p′ and guard are complete ∗/
6 if (i − 1 6∈ p′.in) /∗ only add p′ if last phase not included ∗/
7 p.addSuccessor(guard, X, p′);
8 if (p′ 6∈ visited ∪ pending)
9 pending := pending ∪ {p′};

10 return;
11

12 /∗ seep depends on partial successor location ∗/
13 seep[i] := canseep(tr , p′, i) ∧ tr [i]. inv
14

15 /∗ case 1: i 6∈ p′.in ∗/
16 buildSuccs(i+1, p, p′, X,
17 guard ∧ ¬ (enter[i] ∨ keep[i] ∨ seep[i]));
18

19 /∗ case 2: i ∈ p′.in ∗/
20 guard := guard ∧ (enter[i] ∨ keep[i] ∨ seep[i]);
21 if (i ∈ LB)
22 /∗ case 2a: c[i] ∈ X ∗/
23 if (tr [i]. timeop = greaterequal)

24 buildSuccs(i+1, p, p′ ∪ { i≥ }, X ∪ {c[i]},
25 guard ∧ ¬ keep[i] ∧ enter[i]);
26 buildSuccs(i+1, p, p′ ∪ { i> }, X ∪ {c[i]},
27 guard ∧ ¬ keep[i] ∧ ¬ enter[i]);
28 else
29 buildSuccs(i+1, p, p′ ∪ { i> }, X ∪ {c[i]},
30 guard ∧ ¬ keep[i], inv);
31 /∗ case 2b: c[i] 6∈ X ∗/
32 if (i ∈ p.wait)

33 buildSuccs(i+1, p, p′ ∪ (p ∩ {i>, i≥}), X,
34 guard ∧ keep[i] ∧ c[i] < tr[i]. bound);
35 buildSuccs(i+1, p, p′ ∪ { i }, X,
36 guard ∧ keep[i] ∧ c[i] ≥ tr[i]. bound);
37 else
38 buildSuccs(i+1, p, p′ ∪ { i }, X, guard ∧ keep[i]);
39 else if (i ∈ UB ∧ ¬ canseep(tr, p′, i))
40 . . .
41 else /∗ i ∈ p′ ∗/
42 buildSuccs(i+1, p, p′ ∪ { i }, X, guard);

Figure 6.3.: Pseudo code to compute successors p′ and corresponding guard

6.2. Reachability and Phase Event Automata 149

the guard needs to be modified as in line 16. Here is the first recursive
call. In all other cases keep ∨ enter ∨ seep needs to hold, hence guard is
modified in line 19. The cases i ∈ LB and i ∈ UB ∧ ¬ canseep(tr , p′, i) are
handled separately. This case distinction is also present in the definition
of the guard function on page 116. If the phase has an upper bound the
cases ci ∈ X and ci 6∈ X must be handled separately. In the first case
we know from the definition of guard that ¬ keep[i] must hold and that
i ∈ p′.wait . We need to check for tr [i].timeop = greaterequal . In that case
the successors p′ ∪ {i≥} and p ∪ {i>} are both reachable with a different
guard. Otherwise only p′ ∪ {i>} is reachable. If ci 6∈ X then keep[i] must
hold. We need to check for i ∈ p.wait . If i 6∈ p.wait the successor is
never waiting, otherwise it depends on c[i] < tr [i].bounds, which is added
to the guard. The case i ∈ UB ∧ ¬ canseep(tr , p′, i) can be analogously
implemented. It is omitted here. In the last case guard requires that ci 6∈ X
and i 6∈ p.wait ∪ p.gteq ∪ gt .less. Hence, we have only one recursive call.

Figure 6.4 shows the procedure that builds the automaton by repeatedly
calling buildSuccs on the reachable locations. Because the init predicate
can be seen as a special case of the guard predicate with different values
of enter and keep the procedure buildSuccs can be used to determine the
initial locations. This is used in lines 4–7 of the algorithm. The procedure
also adds the initial locations to the pending set.

In lines 11–20 a location from pending is chosen. It is removed from the
pending set and added to the visited set. Its successors are calculated with
buildSuccs. If new locations are found they are automatically added to the
pending set. This is repeated until no new locations are found.

6.2. Reachability and Phase Event Automata

Model checking [CE81, CGP99] is the process of checking whether a model
satisfies a specification. A specification can be given as a formula in a
temporal logic and the model as an automata. In our context the automata
are phase event automata and the specifications are given as Duration
Calculus formulae.

It is sometimes possible to reduce the model checking problem into a
automata-theoretic problem such as reachability of states or emptiness of
the language. For example, for LTL model checking [Var96] of a formula F ,
the negated formula ¬ F can be translated into a Büchi-Automaton. This
automaton is put in parallel to the system model. If the parallel product

150 6. Model Checking

1 pending := ∅;
2

3 /∗ build initial locations and put them on pending list ∗/
4 for (i : dom(tr))
5 if (i = 0)
6 enter[i] := true
7 else
8 enter[i] := enter[i−1] ∧ tr[i−1].allowEmpty ∧ tr[i].inv;
9 keep[i] := false;

10 buildSuccs(1, init, ∅, ∅, true);
11 while (pending 6= ∅)
12 choose p ∈ pending
13 pending := pending \ {p}
14 visited := visited ∪ {p}
15

16 /∗ build successor locations and put them on pending list ∗/
17 for (i : dom(tr))
18 enter[i] := enter(tr, p, i)
19 keep[i] := keep(tr, p, i)
20 buildSuccs(1, p, ∅, ∅, true);

Figure 6.4.: Pseudo code to build power set automaton

6.3. Translation to Uppaal Automata 151

of these automata has a run, this is a run of the system model satisfying
¬ F . Hence, the system does not satisfy the specification.

A similar approach can be used for Duration Calculus formulae [Mey05].
Meyer translates a large class of formulae to a variant of phase event au-
tomata with bad locations, called test automata. These bad locations are
reachable if the negation of the formula is satisfied. The translation is
based on the power set construction presented in section 5.3. He uses
non-deterministic automata and can thus handle a much larger class of
formulae. The idea of test automata is based on the work of Dierks and
Lettrari [DL02], who used Uppaal timed automata to check formulae of a
graphical specification language based on Duration Calculus.

Therefore, in the following sections we tackle only the reachability prob-
lem for phase event automata. Thus, we investigate under which con-
straints it is decidable, or at least semi-decidable, that a certain location of
the automaton is reachable. Decidability of phase event automata depends
on the constraint language L(V). If only finite data types are allowed it is
possible to decide reachability with the region construction for timed au-
tomata. A practical approach using the model checker Uppaal is described
in the next section.

For infinite data types it immediately becomes undecidable. The sim-
plest infinite data type, natural numbers, together with operations incre-
ment, decrement, and check for zero leads to undecidability of the reacha-
bility problem:

Lemma 6.1. The reachability problem of phase event automata, with two
natural number variables v1, v2 ∈ V , where L(V) contains increment,
decrement, and check for zero is undecidable.

Proof. A phase event automaton with two natural number variables and
without any clocks or events is equivalent to a two-counter machine. The
reachability problem for two-counter machines is not decidable. 2

The reachability problem is still semi-decidable as long as the satisfi-
ability problem for L(V) is semi-decidable. A proof for this is given in
section 6.4.3.

6.3. Translation to Uppaal Automata

It is possible to translate a phase event automaton into a simple timed
automaton by abstracting from states and events. By this an off-the-shelf

152 6. Model Checking

model checker for timed automata can be used, such as Uppaal or Kronos.
The automata are abstracted as follows. First the edges are normalised

such that each guard is a conjunct of literals. This can be achieved by
converting the guards to disjunctive normal form and splitting the edges.
Then for all edges (p, g ,X , p′) of the automata, it is checked whether s(p) ∧
g ∧ (s(p′))′ is satisfiable. If it is unsatisfiable the edge is removed without
changing the behaviour of the automaton. Likewise initial edges (g , p)
are removed if g ∧ s(p) is not satisfiable. Then all unreachable locations
are removed. The resulting automaton is then abstracted by removing all
literals from the guard except clock constraints and by setting all state
invariants to true.

The abstraction throws away any synchronisation requirements on state
variables and events. Therefore, it should be used on a single automaton.
For a net of automata, the full parallel product is computed in advance to
preserve synchronisation.

For checking reachability of locations in the automaton, this abstraction
is exact under the following condition. The stuttering edge (p, g , ∅, p) must
satisfy the following formula:

(∀ e : A • ¬ e) ∧ s(p) ∧ strict(I (p)) ⇒ g (6.1)

In this formula the pre-condition ∀ v : V • x = x ′, which is present in
definition 4.4 on page 73 (stuttering invariant), is dropped.

Lemma 6.2. Let A = (P ,V ,A,C ,E , s, I ,E0) be a phase event automaton
and A′ the automaton abstracted according to the algorithm above. If for
each location p : P there is a stuttering edge (p, g , ∅, p) ∈ E satisfying
(6.1) then a location is reachable in A if and only if it is reachable in A′.

Proof. If a location pn is reachable in A, there is a run

run = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn)〉

in A. By definition 4.7, there is an edge (pi , gi ,Xi , pi+1) ∈ E for each step
i of the run such that βi , β

′
i+1, γi +ti ,Yi |= gi . Because also βi |= s(pi) and

β′i+1 |= (s(pi+1))′ hold, the formula s(pi) ∧ g ∧ (s(pi+1))′ is satisfiable.
Hence, the edge is still present in A′ (with a weaker guard). Therefore,
run is also a run of A′ and pn is reachable in A′.

If location pn is reachable in A′, then there is a run

run ′ = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn)〉

6.3. Translation to Uppaal Automata 153

in A′. However, this run is not always a run of A because the guards
in A′ are weaker. However, a run of A can be created as follows: For
each step i , there is an edge (pi , ḡi ,Xi , pi+1) in A′ that corresponds to an
edge (pi , gi ,Xi , pi+1) in A. In A the formula s(pi) ∧ gi ∧ (s(pi+1))′ is
satisfiable. Hence, there is a satisfying valuation β

(2)
i ∪ β

′(1)
i+1 ∪ γ1

i ∪ Y 1
i+1.

Because gi is a conjunct of literals and each literal involving clocks is also
in ḡi , the formula is also satisfied with γi instead of γ1

i . Analogously, there
is an initial edge (g , p1) in A and g ∧ s(p1) is satisfied by some valuation
β

(1)
1 . Then

run = 〈(p1, ∅, β
(1)
1 , γ1, t1/2), (p1, ∅, β

(2)
1 , γ1 + t1/2, t1/2),

(p2,Y
(1)
2 , β

(1)
2 , γ2, t2/2), (p2, ∅, β

(2)
2 , γ2 + t2/2, t2/2),

. . . , (pn ,Y (1)
n , β(1)

n , γn , tn/2)〉

is a run of the automaton A: Each β
(1)
i and β

(2)
i satisfies s(pi) by construc-

tion. For the steps from

(pi ,Y
(1)
i , β

(1)
i , γi , ti/2) to (pi , ∅, β

(2)
i , γi + ti/2, ti/2) ,

the special stuttering edge satisfying (6.1) is used. Its guard is satisfied
because

β
(1)
i ∪ (β(2)

i)′ ∪ γi + ti/2 ∪∅ |= (∀ e : A • ¬ e) ∧ s(p) ∧ strict(I (p))

holds. For the other steps, the edge (pi , gi ,Xi , pi+1) that corresponds to
the edge (pi , ḡi ,Xi , pi+1) in A′ is used. Thus, the location pn is reachable
in A. 2

If the condition (6.1) does not hold, i. e., the stuttering edge contains
conjuncts such as v = v ′, the above abstraction is a safe abstraction but
not exact. If the state space is finite the automaton can be transformed
such that (6.1) holds. For each location l and each possible state β of the
state variables a new location (l , β) is created. The state invariant of each
location (l , β) fixes the value of the state according to β. Then from the
stuttering edge the literals v = v ′ can be removed as the state invariant
already assures that the state variables do not change. Of course, this
method is only practical if the state space is small.

154 6. Model Checking

3c

3f

3a

3d

6c

6f

6a

6d

1c

1f

1a

1d

4c

4f

4a

4d

2b

2e

5b

5e

transitions that are reachable
transitions that cannot be taken

Figure 6.5.: Product automaton for the Audio Protocol

6.3.1. Case Study: Audio Protocol

We apply the abstraction approach to the case study of the Philips Audio
Protocol introduced in section 4.6. Our goal is to prove that if the timing
uncertainty δ is small enough the protocol is correct, i.e. every event s.x
communicated by the sender is eventually followed by an event r .x by the
receiver. The sender and receiver have no events in common. They only
synchronise on the common state space, namely the wire variable. This
models the hardware constraints because the Philips hardware components
are only connected by this wire.

The first step is to compute the parallel product of sender and receiver
automaton. It is depicted in figure 6.5. All locations with an unsatisfiable
invariant are already removed. These are those locations where one com-
ponent demands wire = false and the other wire = true. In figure 6.5 the
labelling of the edges and the stuttering edges were omitted to keep that
diagram readable.

In the resulting automaton the variable wire can be abstracted. It is an
internal variable shared only between sender and receiver. By omitting the

6.3. Translation to Uppaal Automata 155

3c

3f

3d

6f

6a

6d

1a

4c

4f

4a

4d

2b

2e 1a

5b

*: 2Ql < x < 2Qh , x := 0

s.1, x := 0

r .1, *
y := 0

s.1, *

r .1, *
y < 5Qhs.0,*

*

r .0
y > 5Ql

s.stop,*

r .stop
y > 9Ql

4Ql < x

x < 4Qh

s.1,*
r .1,*

7Ql < y < 9Qh

y := 0s.0, r .0, *
y < 7Qh

y := 0

*
s.0, r .0, *
y < 5Qh

y := 0
s.stop,*

r .stop
y > 7Ql

s.1,*

r .1, *
5Ql < y < 7Qh

y := 0

Figure 6.6.: Product automaton without unreachable edges and locations

locations in the product automaton where sender and receiver do not agree
on the value of wire, these automata synchronise as expected.

For δ = 1/20, which means five percent tolerance of clock drift, many
edges and some locations are not reachable. This is because of conflicting
conditions for the x and y clock. Uppaal can be used to determine the reach-
able locations. It allows simple LTL queries like 3audio.1f . To determine
the reachable edges one can introduce an auxiliary variable edge. This vari-
able is assigned a different value for each edge. The query 3edge = value
reveals whether the edge is reachable. In the diagram the unreachable
edges are depicted by thin lines. Figure 6.6 shows the product automaton
where these edges and the unreachable locations are removed. We omitted
labelling the edge with forbidden events for simplicity. All events are for-
bidden unless they are explicitly required. The stuttering edges forbid all
events.

The resulting automaton has the nice property that every edge with a
send event s.x is followed eventually or immediately by an edge with the

156 6. Model Checking

corresponding receive event r .x , and there is no other event in between.
This can be checked manually on figure 6.6.

We cannot specify the property that the event r .x eventually occurs as
counterexample trace, since this is an unbounded liveness property. How-
ever, it is possible to formulate it as bounded liveness property. The follow-
ing formula states that it is not possible that a send event is not followed
by a corresponding receive event in an interval larger than 4Q . Thus, the
receive event must occur within that time.

∀ x • ¬ 3(l s.x ∧ 6 l r .x a � r .x ∧ ` > 4Q)

The property that there is no unexpected receive event between a send
event and the corresponding receive event can be specified as follows:

∀ x • ¬ 3(l s.x ∧ 6 l r .x a � r .x a ∃ y | y 6= x • l r .y)

where x and y range over the symbols from {0, 1, stop}. This formula
forbids the event r .y with y 6= x to occur if previously an s.x event occurred
and it was not yet received. Furthermore, there should be no send event
before the previously sent symbol was properly received, hence:

∀ x • ¬ 3(l s.x ∧ 6 l r .x a � r .x ∧ ` > 0 a ∃ y • l s.y)

This formula is very similar to the last one. The extra condition ` > 0
is necessary as otherwise the formula would be violated by a simple send
event s.x . A point interval were s.x occurs satisfies l s.x a � r .x a l s.x .

Because we do not allow quantifiers in counterexample traces we have
to write out the possible values for x and y explicitly, which leads to the
following nine formulae:

¬ 3(l s.0 ∧ 6 l r .0 a � r .0 ∧ ` > 4Q)

¬ 3(l s.1 ∧ 6 l r .1 a � r .1 ∧ ` > 4Q)

¬ 3(l s.stop ∧ 6 l r .stop a � r .stop ∧ ` > 4Q)

¬ 3(l s.0 ∧ 6 l r .0 a � r .0 a l r .1 ∨ l r .stop)

¬ 3(l s.1 ∧ 6 l r .1 a � r .1 a l r .0 ∨ l r .stop)

¬ 3(l s.stop ∧ 6 l r .stop a � r .stop a l r .0 ∨ l r .1)

6.3. Translation to Uppaal Automata 157

¬ 3(l s.0 ∧ 6 l r .0 a � r .0 ∧ ` > 0 a l s.0 ∨ l s.1 ∨ l s.stop)

¬ 3(l s.1 ∧ 6 l r .1 a � r .1 ∧ ` > 0 a l s.0 ∨ l s.1 ∨ l s.stop)

¬ 3(l s.stop ∧ 6 l r .stop a � r .stop ∧ ` > 0 a l s.0 ∨ l s.1 ∨ l s.stop)

To check against these properties we can build the power set automaton
for each of these counterexample traces. The power set automaton for the
first formula looks like this:

{1} {1, 2>}
x ≤ 4Q

{1, 3} {1,2>,3}
x ≤ 4Q

{1,2,3}

s.0 ∧ ¬ r .0

¬ r .0 ∧ x ≥ 4Q
r .0

s.0 ∧ ¬ r .0

r .0

r .0

¬ r .0 ∧ x ≥ 4Q

¬ s.0 ∨ r .0 ¬ r .0

¬ s.0 ∨ r .0 ¬ r .0 ¬ r .0

The automaton starts in location {1}. If a s.0 event occurs the automaton
enters {1, 2>} uses the clock x to measure the delay 4Q for the second
phase. Once this time has passed and no r .0 event occurred in between,
the automaton can enter location {1, 2, 3}. This location is only reachable
if the first DC formula is not valid. It is therefore called a bad location and
marked with a double border. In the systematic power set construction
there are several bad locations and there is no outgoing edge to a good
location. This is because phase 3 is a true-phase and thus never left.

The automaton for the forth formula is a bit simpler and does not need
any clocks.

158 6. Model Checking

{1} {1, 2} {1,2,3}

{1, 3}

s.0 ∧ ¬ r .0 ∧
¬ r .1 ∧ ¬ r .stop

¬ r .0 ∧
(r .1 ∨ r .stop)

r .0 ∧ (r .1 ∨ r .stop)

r .0 s.0 ∧ ¬ r .0

s.0 ∧ ¬ r .0 ∧ (r .1 ∨ r .stop)

¬ s.0 ∨ r .0 ¬ r .0 ∧ ¬ r .1 ∧ ¬ r .stop
r .0 ∧ ¬ r .1 ∧ ¬ r .stop

¬ r .0

¬ s.0 ∨ r .0

Again, the locations containing phase 3 are bad locations and marked
with a doubled border. Similarly, the other formulae are translated to
test automata. The automata for the first three formula has five loca-
tions, the other have four locations. However, the cross product of these
nine automata already has more than 10000 locations, even if edges with
unsatisfiable guards are omitted.

Building the full product automaton and converting it to Uppaal syntax
takes 33 seconds on an Athlon 2800+ Processor. The automaton has more
than 13729 locations and 76366 transitions. The test automaton has three
clocks corresponding to the lower bounds in the first three DC formulae.
The sender and receiver each has an additional clock and one additional
clock is needed to guarantee that every locations is visited for a non-zero
time. This totals to six clocks. After 107 minutes Uppaal proved that the
property is satisfied.

Most of the locations of the product automaton are bad locations. Be-
cause we are only interested whether some bad location is reachable, not
which bad location is reachable, we can combine all bad locations into a
single location, thus drastically reducing the size of the automaton. If we
do it after each computation step we can very quickly compute the cross
product.

With this optimisation the full cross product of sender, receiver, and all
test automata has only 20 locations and 73 transitions. All other locations
were combined into a single bad location. Building the automaton takes
0.25 seconds and converting to Uppaal syntax takes 0.15 seconds. The
model checker Uppaal needs only 30 milli seconds to prove that the bad
location is not reachable.

This proves that our modified protocol is correct for a timing uncertainty

6.4. A Constraint-based Semantics for PEA 159

of 1/20 which is better than the 5% that we had to prove. The value of
δ can now be modified to determine the maximum allowed timing uncer-
tainty. For δ > 1/19 the protocol breaks. Analysing the counterexample
trace that Uppaal produces shows that the problem is in the short radio
silence between two adjacent messages. When the sender sends two mes-
sage directly after each other and its clock is going very fast, it can send
the first bit of the second message before the receiver has detected the stop
bit. When extending the gap to 5Q (the original specification demanded
a gap of 36Q) we can even increase the uncertainty to 1/17. The same
uncertainty was proven in [BPV94] and [BGK+96]. Note that the protocol
is still correct for minimum gap 4Q and uncertainty 1/17. However, in
that case the sender can issue two send events, before they are received
by the receiver. This results in a trace s.stop, s.1, r .stop, r .1, which is not
allowed by the simple DC formulae we presented above.

For δ > 1/17 the protocol is broken. The model checker gives an error
trace showing the locations of the sender and receiver and the test au-
tomata. In this trace the sender sends the bits 1, 0, 1 with the minimal
duration of 2Q(1 − δ) for each bit slot. The interval between the rising
edges sums up to 8Q(1 − δ), which is less than 7Q(1 + δ) for δ > 1/17.
So the receiver can decode this sequence as 1, 0, 0. This error trace is the
same as in [BPV94] and [BGK+96].

This case study showed that the Uppaal method is feasible. But it also
shows that calculating the cross product in advance can lead to large au-
tomaton description. In this case study, only few locations are not bad
locations, so it makes sense to combine all bad locations into a single one.
Checking against multiple duration calculus formulae at the same time, in-
creases the number of bad locations, but if the bad locations are combined
this does not result in any performance penalties.

6.4. A Constraint-based Semantics for PEA

A completely different approach to model check phase event automata
utilises discrete transition system. Although this only allows discrete steps,
it is still possible to represent dense time using an “old-fashioned recipe
for real-time” [AL92, Lam94]. The runs are described by sequences of
states, where each state gives the values of all variables for a given time
interval. One variable len denotes the duration of the time interval. Events
are represented by changes of Boolean variables as in section 2.3.5. We

160 6. Model Checking

translate the automata into discrete transition systems (with constraints)
in such a way that the transition system generates as runs exactly the
above sequences of interval states.

This section proceeds as follows: first we introduce transition constraint
systems and their runs. We show how parallel composition is defined for
them. Then we give the translation from phase event automata into tran-
sition constraint systems and show the correctness of the translation by
giving a direct relation between runs of phase event automata and runs of
the transition constraint system. Then we apply this translation on some
examples. We will close this sections with some results of the model checker
ARMC for transition constraint systems.

6.4.1. Transition Constraint Systems

A transition constraint system is described by two formulae. One defines
the initial state and the other defines the transition relation:

Definition 6.3. A transition constraint system (TCS)

T = (Var, Init,Trans)

consists of

• Var ⊆ V is a finite set of unprimed (state) variables,

• Init : L(Var) a initial (state) constraint, and

• Trans : L(Var ∪Var′) a (transition) constraint.

Informally, the transition constraint system starts in a state satisfying
Init. It can do transitions according to the transition constraint Trans,
which is a relation between pre-state (valuations of the unprimed variables)
and post-states (valuations of the primed variables).

Let T = (Var, Init,Trans) be a TCS. A state of T is a Var-valuation
α. Taking states as vertices, the TCS T can be viewed as a (potentially
infinite) directed graph (where two states are connected by an edge if they
satisfy the respective transition constraint). This graph gives rise to the
usual notions of run and reachable state. Formally, a run of T is a sequence
of states 〈α1, . . . , αn〉 such that

1. α1 |= Init, and

6.4. A Constraint-based Semantics for PEA 161

2. for all i ≥ 0, αi , α
′
i+1 |= Trans.

We call a state α reachable if there is a run 〈α1, . . . , αn〉 of T such that
α = αn . By Reach(T), we denote the set of reachable states of T .

6.4.2. Translation of PEA to TCS

The basic idea in translating PEA to TCS is to introduce a global variable
len of type Time representing the amount of time that the automaton spent
in the current state. Furthermore for any state variable, event, and clock
variable a corresponding variable of the TCS is introduced. Finally, there
is a variable pA that denotes the currently active location of the automa-
ton. Each edge is translated separately into a transition constraint and
these are then combined by disjunction to produce the complete transition
system. Furthermore we need to represent the time elapse transitions that
are implicit in the phase event automata model.

Definition 6.4. The translation of a phase event automaton

A = (P ,V ,A,C ,E , s, I ,E0)

into a transition constraint system T (A) = (Var, Init,Trans) is given by:

Loc = P (6.2)
Var = V ∪A ∪ C ∪ {len, pA} (6.3)

Init =
∨

(g , p0) ∈ E0, • len > 0 ∧ g ∧

(
∧

c ∈ C • c = len) ∧ pA = p0 ∧ s(p0) ∧ I (p0)
(6.4)

Trans =
∨

(q1, g ,X , q2) ∈ E • len′ > 0 ∧ pA = q1 ∧ p′A = q2 ∧ g ∧∧
c∈X

c′ = len′ ∧
∧

c∈C\X

c′ = c + len′ ∧ s ′(q2) ∧ I ′(q2)
(6.5)

The formula Init demands that there is an initial edge (g , p0) ∈ E0 such
that g , the state and clock invariant of p0, and pA = p0 hold. Furthermore,
len, the duration the automaton stays in the first location, is positive and
all clocks are initialised to this value. Thus the passing of the time len in
the initial location is already modelled by the Init formula.

The formula Trans demands that there is an edge (q1, g ,X , q2) ∈ E
by which location q1 is left. The state and clock invariant of q1 were

162 6. Model Checking

already checked when entering the location, therefore the formula only
checks the guard g and the invariants for q2. Again, len′ denotes the
duration the automaton stays in q2. Therefore all clocks that are not reset
are incremented by len′ and the other clocks are set to len′.

We show that the translation T (A) of a PEA A preserves the semantics
in the sense that there is a correspondence between the runs of A and
T (A).

Definition 6.5. Given a run r = 〈α1, . . . αn〉 of the TCS T (A), we define
the sequence rA = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn)〉 such that
for all i ≥ 1,

• pi = αi(pA),

• βi = V C αi ,

• γi(c) = αi(c)− αi(len) for all c ∈ C ,

• ti = αi(len), and

• Y1 = ∅ and Yi = {e ∈ A | αi−1(e)} for i > 1

As the following theorem shows, this translation maps runs of the TCS
T (A) to runs of the PEA A. Furthermore, the translation is surjective, so
for every run of A there is a corresponding run of T (A).

Theorem 6.6. Let A be a PEA and T (A) its TCS translation.

1. For all runs r of T (A), rA is a run of A.

2. For every run r̂ of A there is a run r of T (A) such that rA = r̂ .

Proof. 1. Let r = 〈α1, . . . , αn〉 be a run of T (A) and rA the correspond-
ing translation of that run. We need to show that this is indeed a
run of A by checking definition 4.7.

From 6.5 we have immediately Y1 = ∅.

Because α1 |= Init holds and from (6.4), there is an initial edge
(g , p0) ∈ E0, such that

α1 |= len > 0 ∧ g ∧ (
∧

c ∈ C • c = len) ∧ pA = p0 ∧ s(p0) ∧ I (p0)
(6.6)

6.4. A Constraint-based Semantics for PEA 163

holds. From definition 6.5 of rA we have p1 = α1(pA) = p0 and
β1 = (V C α1) |= g , which is the second condition in 4.7

From α1 |= c = len we have γ1(c) = α1(c)−α1(len) = 0 for all c ∈ C .

For 1 ≤ i < n we have αi , α
′
i+1 |= Trans. Because of (6.5) there is

an edge (q1, g ,X , q2) ∈ E such that

αi , α
′
i+1 |=len′ > 0 ∧ pA = q1 ∧ p′A = q2 ∧ g ∧∧

c∈X

c′ = len′ ∧
∧

c∈C\X

c′ = c + len′ ∧ s ′(p2) ∧ I ′(p2)

(6.7)

From definition 6.5 we have pi = αi(pA) = q1 and pi+1 = αi+1(pA) =
q2.

Looking just at the first, the third and the last two conjuncts and
omitting the primes we get αi+1 |= len > 0 ∧ s(pA) ∧ I (pA). For α1

the same follows from equation (6.6). This implies ti = αi(len) > 0
for all i ∈ 1..n. From definition 6.5 we have pi = αi(pA) hence
βi = V Cαi |= s(pi). Also from definition 6.5 we have (γi + ti)(c) =
γi(c) + αi(len) = αi(c), hence γi + ti = C C αi |= I (pi).

From αi , α
′
i+1 |= g we have βi , β

′
i+1γi + ti ,Yi+1 |= g , because βi =

V C αi , β′i+1 = V C α′i+1 and γi + ti = C C αi and χYi+1 = E C αi .
For c ∈ X we have γi+1(c) = αi+1(c) − αi+1(len) = 0. For c 6∈ X
we have γi+1(c) = αi+1(c)− αi+1(len) = αi(c) = γi(c) + ti . Hence,
γi+1 = (γi + ti)[X := 0].

2. Let r̂ = 〈(p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn) be a run of A.
Then define αi for i ∈ 1..n as follows:

αi(pA) = pi

αi(len) = ti
αi(v) = βi(v) for all v ∈ V
αi(c) = γi(c) + ti for all c ∈ C
αi(e) = true for all e ∈ Yi+1

αi(e) = false for all e ∈ A \Yi+1

Set r = 〈α1, . . . , αn〉. It is straightforward to check that rA = r̂ .
We show that r is indeed a run of T (A). Since r̂ is a run of A

164 6. Model Checking

there is by definition 6.5 an initial edge (g , p1) ∈ E0, such β1 |= g .
Furthermore, β1 |= s(p1), γ1 + t1 |= I (p1) by definition 6.5. Also
γ1(c) = 0 for all c ∈ C , hence α1(c) = t1 = α1(len). Therefore,
α1 |= (

∧
c ∈ C • c = len). Also t1 > 0 hence

α |= len > 0 ∧ g ∧ (
∧

c ∈ C • c = len) ∧ pA = p1 ∧ s(p1) ∧ I (p1)

This implies α |= Init.

For each step i there is by definition 6.5 an edge (pi , g ,X , pi+1) ∈ E
with βi , β

′
i+1, γi + ti ,Yi+1 |= g and γi+1 = (γi + ti)[X := 0]. Hence,

αi , α
′
i+1 |= g and

αi+1(c) =

{
ti+1 c ∈ X
αi(c) + ti+1 c 6∈ X

From definition 6.5 we further have ti+1 > 0, βi+1 |= s(pi+1) and
γi+1 + ti+1 |= I (pi+1) hence

αi , α
′
i+1 |= len > 0 ∧ pA = pi ∧ p′A = pi+1 ∧ g ∧∧

c∈X

c′ = len′ ∧
∧

c∈C\X

c′ = c + len′ ∧ s ′(pi+1) ∧ I ′(pi+1)

Hence, αi , α
′
i+1 |= Trans. Therefore, r is indeed a run of T (A).

2

Parallel Product of Transition Constraint Systems

The parallel product of phase event automata has a simple corresponding
operation on TCS: conjunction of formulae. The exact definition also needs
to take the set of variables into account:

Definition 6.7. The parallel composition T1‖T2 of two transition constraint
systems T1 and T2 (where Ti = (Vari , Initi ,Transi), i = 1, 2) is the TCS

T = (Var1 ∪Var2, Init1 ∧ Init2,Trans1 ∧ Trans2)

The following result similar to lemma 4.8 holds for the parallel compo-
sition of transition constraint systems:

6.4. A Constraint-based Semantics for PEA 165

Lemma 6.8. For TCS T1 and T2, 〈α1, . . . , αn〉 is a run of T1 ‖ T2 if and
only if 〈Var1Cα1, . . . ,Var1Cαn〉 and 〈Var2Cα1, . . . ,Var2Cαn〉 are runs
of T1 and T2, respectively.

Proof. Let 〈α1, . . . , αn〉 be a run of TCS T . Since α1 |= Init1 ∧ Init2 and
Init1 only references variables from Var1, we have (Var1 C α1) |= Init1.
Likewise from αi , α

′
i+1 |= Trans1 ∧ Trans2 we have (Var1 C αi), (Var1 C

α′i) |= Trans1. So 〈Var1 C α1, . . . ,Var1 C αn〉 is indeed a run of Trans1.
Analogously for Trans2.

Now let 〈Var1 C α1, . . . ,Var1 C αn〉 and 〈Var2 C α1, . . . ,Var2 C αn〉 be
runs of Trans1 and Trans2, respectively. From Var1 C α1 |= Init1 and
Var2 C α1 |= Init2 we have α1 |= Init1 ∧ Init2. Similarly, for the transition
relation Trans1 ∧ Trans2. 2

6.4.3. Bounded Model Checking

If the satisfiability problem for the language L(Var) is semi-decidable,
the reachability problem for the transition constraint system is also semi-
decidable. The simplest algorithm works by unrolling the TCS upto a pre-
determined depth. This approach, called bounded model checking [CBRZ01,
BCCZ03], is useful to quickly find short counterexamples.

The function unroll(T , k) computes the set of states reachable in k steps
of the transition system. It can be computed by the following recursive
equation:

unroll(T , 0) = Init[v(0)/v] (6.8)
unroll(T , k + 1) = unroll(T , k) ∧ Trans[v(k)/v][v(k+1)/v ′] (6.9)

Here the renaming [v(k)/v] should denote that all variables in Var are
renamed by decorating them with the index (k). The variables v(i) in
the above formula represent the state after exactly i steps. The states
reachable in zero steps are the initial states, which is stated by (6.8). The
next equation computes the states reachable after exactly k + 1 steps:
First, the reachable states after k steps are computed. Then the transition
relation Trans is applied on these states. The variables of the pre-states
are renamed the v(k) in the transition relation and the variables of the
post-state are renamed to v(k+1). A non-deterministic algorithm that semi-
decides reachability for a transition constraint system is given in figure 6.7.

166 6. Model Checking

Input: TCS T , state predicate φ.
Output: true, if a state satisfying φ is reachable.

1. Guess unrolling depth k . This corresponds to the number
of steps needed to reach a state satisfying φ.

2. Compute the unrolled system F := unroll(T , k).

3. Return true if F ∧ φ[v(k)/v] is satisfiable.

Figure 6.7.: Algorithm to semi-decide reachability for a TCS

6.4.4. ARMC

The bounded model checking technique cannot be used to prove that the
system is safe. It can only be shown that no counterexample of a length
upto k exists. However, there is no guarantee that no larger counterexam-
ples exists.

A different approach to prove safety properties of infinite state systems
is abstraction by over-approximation. If the abstraction is too coarse, it
will produce spurious counterexamples in the abstract system that cannot
be refined for the concrete system. On the other hand, if no counterex-
ample is found in the abstract system, the concrete system is safe, too.
When a spurious counterexample is found it gives a hint to which parts of
the abstraction are too coarse. This hint can be used to produce a finer
abstraction that will not produce the same spurious counterexample. This
technique is called abstraction refinement model checking.

We use the abstraction refinement model checker ARMC [Ryb02]. This
model checker uses predicate abstraction and interpolants on the coun-
terexample to generate new predicates in the refinement cycle. The cur-
rent implementation supports infinite state systems involving linear real or
integer arithmetic. As the reachability problem for transition constraint
system is only semi-decidable, it is impossible to guarantee that ARMC
will terminate. The following three cases are possible.

• ARMC finds an abstract counterexample that can be transferred to
the concrete system. In this case, the property is not satisfied and
ARMC outputs the counterexample.

• A safe abstraction of the system is found, that contains no counterex-
ample for the property. In this case, ARMC assures that the property

6.4. A Constraint-based Semantics for PEA 167

is satisfied. It also outputs the predicates used for abstracting the
system.

• ARMC enters an infinite abstraction refinement loop. All abstrac-
tions contain spurious counterexamples. New abstraction predicates
are added to exclude this particular counterexample. However, an-
other larger spurious counterexample is still present in the abstract
system. ARMC will never terminate.

The transition constraint systems used in ARMC differ from defini-
tion 6.3. They have an explicit notion of program counters; thus there
is no need to represent them as state variables. Instead of a single initial
predicate there is a a set of tuples (p0, Init), where p0 is is an initial location
and Init a predicate describing the state. A system state is represented by
a tuple (p, α), where p is a location and α a state valuation.

Unfortunately, ARMC only works on disjunctive normal form formulae.
When working on a single automaton the translation given in section 6.4.2
almost produces a formula of this form. Only edges with guards that
contain disjunctions need to be transformed to disjunctive normal form
and split into multiple edges, one for each disjunct. For disjunction free
guards the formulae Init and Trans are already in disjunctive normal form.

When checking several phase event automata that run in parallel this
restriction of ARMC poses a problem, though. The parallel composition
for TCS combines the transition guards with conjunction. When using
the distributive law to convert this to disjunctive normal form we get an
exponential blow up. This gives the same result as computing the parallel
product automaton directly and translating this automaton to a TCS.

6.4.5. Case Study: Elevator

We apply the above algorithm to the case study for the elevator introduced
in section 3.2.2. The goal is to prove the following safety property: all
reachable states of the system satisfy the invariant

Min ≤ current ≤ Max . (6.10)

This invariant states that the current floor is always between minimum and
maximum floor. It holds because the elevator must stop when it reaches the
goal floor due to the real-time requirements. The invariant depends also on
the Z and CSP part. Thus, we need to translate the full specification into

168 6. Model Checking

a transition constraint system. The phase event automata of the elevator
specification were already given in sections 5.1, 5.2, and 5.3.3.

For the CSP automaton we use the variable pC to store the current
location. For simplicity we enumerate the locations in figure 5.1 on page 99
from left to right as 0, 1, 2. The resulting transition constraint system is as
follows:

InitCSP = pC = 0
TransCSP = pC = 0 ∧ ¬ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed ∧ p′C = 0

∨ pC = 0 ∧ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed ∧ p′C = 1
∨ pC = 1 ∧ ¬ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed ∧ p′C = 1
∨ pC = 1 ∧ ¬ newgoal ∧ start ∧ ¬ stop ∧ ¬ passed ∧ p′C = 2
∨ pC = 2 ∧ ¬ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed ∧ p′C = 2
∨ pC = 2 ∧ ¬ newgoal ∧ ¬ start ∧ ¬ stop ∧ passed ∧ p′C = 2
∨ pC = 2 ∧ ¬ newgoal ∧ ¬ start ∧ stop ∧ ¬ passed ∧ p′C = 0

The Z automaton on page 102 has only a single location. Therefore,
we do not need a variable to store the current location. The resulting
transition constraint system is as follows:

InitZ = current = goal = Min
TransZ = ¬ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed

∧ current ′ = current ∧ goal ′ = goal ∧ dir ′ = dir
∨ newgoal ∧ ¬ start ∧ ¬ stop ∧ ¬ passed
∧ Min ≤ goal ′ ≤ Max ∧ goal ′ 6= current
∧ current ′ = current ∧ dir ′ = dir

∨ start ∧ ¬ newgoal ∧ ¬ stop ∧ ¬ passed
∧ (goal > current ⇒ dir ′ = 1)
∧ (goal < current ⇒ dir ′ = −1)
∧ current ′ = current ∧ goal ′ = goal

∨ stop ∧ ¬ newgoal ∧ ¬ start ∧ ¬ passed
∧ goal = current
∧ current ′ = current ∧ goal ′ = goal ∧ dir ′ = dir

∨ passed ∧ ¬ newgoal ∧ ¬ start ∧ ¬ stop
∧ current ′ = current + dir

6.4. A Constraint-based Semantics for PEA 169

∧ goal ′ = goal ∧ dir ′ = dir

The phase event automata for the two DC formulae of the specification
are depicted on page 139. The first has two locations {1}, {1, 2≤} that we
enumerate as 0 and 1. Initially, the automaton starts in location 0 and
resets clock c2. By convention, the variable c2 of the transition constraint
is set to the value of clock c2 after the first delay len has passed, therefore
it is initialised to len. Also when the clock is reset by some transition it
is set to len. Otherwise it is incremented by len. The resulting transition
constraint system comprises these formulae:

InitDC1 = pD1 = 0 ∧ c2 = len

TransDC1 = pD1 = 0 ∧ ¬ passed ∧ c′2 = c2 + len ∧ p′D1 = 0
∨ pD1 = 0 ∧ passed ∧ c′2 = len ∧ c′2 ≤ 3 ∧ p′D1 = 1
∨ pD1 = 1 ∧ ¬ passed ∧ c′2 = c2 + len ∧ c′2 ≤ 3 ∧ p′D1 = 1
∨ pD1 = 1 ∧ ¬ passed ∧ c2 ≥ 3 ∧ c′2 = c2 + len ∧ p′D1 = 0

The translation of the second DC automaton is very similar. The loca-
tions {1}, {1, 2} and {1, 2, 3≥} are encoded as 0, 1, and 2, respectively. In
this automaton some locations have invariants. This invariant is checked
whenever the variable pD2 is set to a new value. This automaton has two
initial edges, so the initial constraint is a disjunction of two constraints,
one for each initial edge.

InitDC2 = pD2 = 0 ∧ c3 = len ∧ current = goal
∨ pD2 = 1 ∧ c3 = len ∧ current 6= goal

TransDC2 = pD2 = 0 ∧ c′3 = c3 + len ∧ current = goal ∧ p′D2 = 0
∨ pD2 = 0 ∧ c′3 = c3 + len ∧ current 6= goal ∧ p′D2 = 1
∨ pD2 = 1 ∧ c′3 = c3 + len ∧ current 6= goal ∧ p′D2 = 1
∨ pD2 = 1 ∧ c′3 = len ∧ current = goal ∧ c′3 < 2 ∧ p′D2 = 2
∨ pD2 = 2 ∧ ¬ stop ∧ c′3 = c3 + len ∧ current = goal ∧

c′3 < 2 ∧ p′D2 = 2
∨ pD2 = 2 ∧ stop ∧ c′3 = c3 + len ∧ current = goal ∧ p′D2 = 0
∨ pD2 = 2 ∧ c′3 = c3 + len ∧ current 6= goal ∧ p′D2 = 1

Before this transition constraint system can be fed into the model checker
ARMC some transformations are necessary. ARMC can only handle tran-
sition constraint systems in disjunctive normal form (DNF). Each of the

170 6. Model Checking

above transition constraint is in this form already. However, the TCS for
the parallel product of the four automaton is the conjunction of the for-
mulae above and therefore not in DNF anymore. Therefore, this formula
needs to be converted back into DNF, which gives the same formulae as
computing the parallel product automaton and converting it to TCS.

The model checker ARMC does not support boolean variables. It can
only handle either real or integer variables. We only need boolean variables
to model events. These can be abstracted away after converting the TCS to
DNF: conjuncts that contain event variables in positive and negative form
are equivalent to false and can thus be omitted. In the other conjuncts
the event variables can be omitted. The particular events occurring is only
important for synchronisation and that is resolved when computing the
DNF of the full TCS.

For these experiments we used our tool for phase event automata to
compute the parallel product as a single automaton. This automaton is
then converted into ARMC syntax automatically. The conversion also uses
the explicit locations that are provided by ARMC.

Since ARMC does not handle transition constraint systems with both
integer and real variables, we have to abstract the integer variables by real
variables. Using real variables for current , goal and dir is a safe abstraction.
This is because it allows all the runs that are allowed with integer variables
and additional runs with non-integer values for these variables. However,
this abstraction is too coarse for our purposes. If the difference between
current floor and goal floor is not integer the elevator will never reach the
goal floor exactly. To prevent this, an additional axiom is inserted that
holds for the original case study, where current and goal are integers:

current 6= goal ⇒ current ≤ goal − 1 ∨ current ≥ goal + 1

This axiom just encodes a property of integer numbers that is needed to
prove the safety of the elevator. Because it holds for all runs of the original
specification, adding the axiom yields a safe abstraction.

In [HM05] we successfully used ARMC to prove the invariant 6.10 using
this algorithm. When abstracting from the event variables, as described
above, ARMC proves the property within 96 seconds on a standard Linux
PC (2.6 GHz Pentium 4).

However, the general reachability problem for transition constraint sys-
tems is only semi-decidable. Therefore, ARMC does not always give an
answer. Its termination depends on the heuristic it uses to generate new

6.5. Related Work 171

abstraction predicates. Unfortunately, the latest version of ARMC cannot
find the correct abstraction predicates needed for the elevator case study.
The results given above are generated with a previous release of ARMC.

6.5. Related Work

Using binary decision diagrams (BDD) to represent boolean formulae is
proposed in [Bry86]. They introduce the notion of reduced ordered BDD
to get a small and canonic representation. The theory of ROBDD is
well-researched and there are several libraries such as CUDD [Som98],
BuDDy [LN99] and JBDD [Vah04]. These libraries use a very efficient
representation and highly optimised algorithm. Unfortunately, these op-
timisations make it very hard to extend the libraries for different kind of
decision diagrams.

Our implementation of a decision diagram library can handle nodes with
an arbitrary number of children, which are needed for interval decision
diagrams [ST98]. New types of nodes can be created in an object-oriented
way. For each formula only one instance is created. A reference to this
shared instance it is used at all places where the formula is needed. This
makes the implementation space efficient.

6.5.1. Audio Protocol

The audio protocol was first analysed in [BPV94] using Timed I/O au-
tomata to show that it is correct for t > 1/17. The authors establish a
weak timed forward simulation from the parallel composition of sender and
receiver to a specification. The specification is a simple buffering automa-
ton that receives a message and outputs it after a time. The simulation
relation and the proof of correctness were created manually. They were
checked with the Coq proof assistant [BC04].

In [LPY95] an automatic proof using Uppaal was given. The synchronisa-
tion between sender and a receiver was achieved by an event up representing
the rising edge on the wire. The correctness was shown by constructing
a test automaton by hand. If this automaton expects a zero bit to be re-
ceived next, it can communicate output 0, otherwise, output neq 0. The
latter causes the receiver to enter an error state if it received a zero. Sim-
ilarly events exists for one bits. At any state of the test automaton either
output 0 or output neq 0 is enabled but this has to be established manually.
If one of the conditions under which output neq 0 must be communicated

172 6. Model Checking

is missing, it is possible that the receiver cannot enter the error state even
if the protocol is incorrect.

We automatically create the test automaton from Duration Calculus
formulae. Thus, provided that the formula describes the desired behaviour
the automaton is guaranteed to be correct. It is much easier to create a
correct formula than a complex test automaton. Also the behaviour can
easily be specified by several small formulae, each testing for one undesired
behaviour.

Our model is also simpler than the one given in [LPY95], which is because
the change of the wire variable and the receiving and sending of events can
be done synchronously with phase event automata. In Uppaal the sender
automata need intermediate locations to perform an up event at the same
time it receives a input 1 event.

6.5.2. Model Checking Duration Calculus

Although the general Duration Calculus is not decidable [ZHS93], there
have been several approaches to prove decidability for subsets of the lan-
guage or different time models. For example, DCVALID [Pan01] checks
a large subset of discrete time duration calculus formulae for satisfiabil-
ity. In [Frä98], Fränzle gives decidability results for different subsets of
DC and underlying time models. The problem he decides is the model
property for timed automata: given a timed automata and a DC for-
mula, do all runs of the automata satisfy the formula. For dense-time
duration calculus with finitely variable models the largest subset of DC is
{dPe, ` < k , ` = k , ` > k} combined with the operators ∧,∨,a and exactly
one outermost negation.

Using our power set construction, Meyer [Mey05] improves the result of
Fränzle: With his test automata he can decide the model property for the
formula built from arbitrary positive or negative counterexample formulae
using ∧,∨,a and exactly one outermost negation. Since dPe, ` < k , ` > k
are positive counterexample formulae and ` = k can be represented by
` ≥ k ∧ ` ≤ k , this class is a superset of the set given by Fränzle. With the
abstraction given in section 6.3, reachability for Meyer’s test automata,
which satisfy the strong stuttering invariant (6.1), can be decided with
Uppaal.

In [DL02] Dierks and Lettrari present another translation from require-
ments to test automata. The requirements are given as Constraint Dia-
grams [Kle00] which have a Duration Calculus semantics with an assump-

6.5. Related Work 173

tion and a commitment part. Dierks and Lettrari demand that adjacent
commitments exclude each other, so that they can be checked in an deter-
ministic way. The class of formulae that can be handled is neither a sub
class nor a super class of the formulae that can be handled by Meyer using
the power set construction.

174

175

7. Conclusion

Contents
7.1. Summary . 175

7.2. Future Work . 176

In this chapter, we summarise the results of this thesis and discuss topics
for future work.

7.1. Summary

In this thesis, we presented CSP-OZ-DC, a new combination of CSP,
Object-Z, and Duration Calculus. This language is based on the exist-
ing combination CSP-OZ by Fischer. We also redefined the CSP dialect
CSPz that is used in the CSP part of CSP-OZ-DC specification to cope
with schema types as channel values, and gave new type-checking rules
and a more accurately defined semantics. For CSP-OZ-DC, we defined its
semantics by a set of interpretations, which are mappings from the time
domain into Z models.

To give an operational semantics of CSP-OZ-DC, we defined the model
of phase event automata. These automata synchronise on state variables
and events, and have the notion of real-time. Although the automata
can share global state variables, their parallel composition is fully com-
positional, which facilitates modular reasoning. The parallel composition
corresponds to logical conjunction in Duration Calculus and to alphabe-
tised parallel composition of CSP processes. Therefore, it can be used to
define the interaction between the CSP, Object-Z, and Duration Calculus
part of a class. It can also be used to build larger systems from multiple
classes.

We defined the translation of CSP-OZ-DC to phase event automata.
Here, the main contribution is the translation of DC counterexample for-
mulae. We defined an automatic translation for a large class of formulae
that is a proper superclass of the DC implementables. In theorem 5.1, the-
orem 5.2, and corollary 5.20, we proved the soundness of the translation.

176 7. Conclusion

Finally, we presented model checking techniques for phase event au-
tomata. Instead of creating a new model checker, we provided translations
into timed automata and transition constraint systems to reuse existing
model checkers for these domains, Uppaal and ARMC. The feasibility of
the approach was illustrated with case studies.

7.2. Future Work

In this thesis, we defined a trace semantics for CSP-OZ-DC. For phase
event automata a trace semantics was given in form of a set of runs. How-
ever, it is well known that a trace semantics is too weak to represent non-
deterministic choice and deadlocks. For CSP, the failures divergence se-
mantics gives a more complete view of the behaviour of a process. The
semantics is defined as a set of failures that describe a behaviour by a
trace and the set of communication the process can refuse after the trace.
In [Dav93], Davies develops a theory for timed failures, which he uses to
define semantics for Timed CSP. A similar semantics can be given for phase
event automata, and thus for CSP-OZ-DC classes.

In section 6.3, we used bad locations to check properties specified by
DC formulae. These bad locations correspond to final states in automata
theory. The system violates the formula if there is an accepting run of
the automaton that ends in a final state. For liveness and fairness prop-
erties, we need to consider infinite runs and Büchi acceptance [Büc60]: a
run is accepted if one of the final states is visited infinitely often. Alur and
Dill [AD94] analyse timed Büchi automata and the more general timed
Muller automata. Their results should be transferable to phase event au-
tomata.

The latest version of ARMC can check for termination, i. e., whether a
group of locations must eventually be left. A non-terminating run corre-
sponds to an accepting run of a Büchi automaton. Therefore, it should be
possible to use Büchi test automata to check general liveness properties.
Meyer [Mey05] considers DC formulae with liveness. Although he does not
give a translation to phase event automata (which would require Büchi
automata), he provides simplifications for liveness formulae. With these
simplifications, it should be easy to build the Büchi phase event automaton
that can be used with ARMC.

Another interesting task is to combine phase event automata with stop
watch automata. These automata have clocks that can be stopped in

7.2. Future Work 177

certain states without resetting them to zero. If the clock is stopped if
and only ¬ P holds, the clock measures the duration that P hold, which
is expressed as ∫ P in Duration Calculus. The counterexample traces can
be enriched with phases demanding that ∫ P ∼ k , where ∼ ∈ {<,≤,≥, >}.
Multiple formulae of the form ∫ P ∼ k can be conjuncted, provided that
∼ is always the same operator. Because formulae containing ` = k cannot
always be translated into a deterministic automaton, and because it can
be expressed as ∫ 1 ≤ k ∧ ∫ 1 ≥ k , mixing of comparison operators cannot
be allowed. Although the reachability problem for stop watch automata
is not decidable, the translation of stop watch phase event automata to
transition constraint systems is still possible. There is no guarantee that a
model checker like ARMC will produce a result though.

178

179

A. Syntax of CSP-OZ-DC

The basic syntax of CSP-OZ-DC is based on the syntax of Z. All constructs
allowed in Z are also valid CSP-OZ-DC specifications. The syntax for
Expression and Paragraph is extended to allow the new constructs for
CSPz and CSP-OZ-DC. Also some new non-terminals are introduced.

To denote the syntax, we use BNF grammar with a few extensions to
make the syntax description more readable. The notation X , . . . ,X stands
for one or more X separated by the commas. Furthermore, slanted brackets
are used as in [X] denote that X is optional.

A.1. New constructs in CSPz

Interface ::= ChannelDecl NL . . .NL ChannelDecl

ChannelDecl ::= chan NAME , . . . ,NAME[: Expression]

| local chan NAME , . . . ,NAME[: Expression]

ProcessDeclaration ::= ProcessEquation NL . . .NL ProcessEquation

ProcessEquation ::= NAME[(SchemaText)] c= Expression

Expression ::= Stop | Skip | Chaos(Expression) | Diver

| Expression → Expression

| Expression 2 Expression

| Expression u Expression

| Expression o
9 Expression

| Expression ‖
Expression

Expression

| ExpressionExpression‖ExpressionExpression

180 A. Syntax of CSP-OZ-DC

| Expression ||| Expression

| Expression [Expression] Expression

| Expression 4 Expression

| Expression \ Expression

| Expression[Renaming]

| Predicate & Expression

| Expression

| 2SchemaText • Expression

| uSchemaText • Expression

| o
9
SchemaText • Expression

| ‖[Expression]SchemaText • Expression

| ‖SchemaText • [Expression]Expression

| |||SchemaText • Expression

| [Expression]SchemaText • Expression

| . . . (standard rules for Expression) . . .

A.2. New constructs in CSP-OZ-DC

Paragraph ::= COD Class
| . . . (standard rules for Paragraph) . . .

COD Class ::= NAME [[Formals]] [(SchemaText)]
COD SchemaText

COD SchemaText ::= Interface
ProcessDeclaration
[Paragraph . . .Paragraph]
State
[Init]

A.3. DC formulae 181

[Operation . . .Operation]
| DC

State ::=
[DeclPart]

[
Predicate]

Init ::= Init
Predicate

Operation ::= com NAME
∆(NAME , . . . ,NAME)
DeclPart

[
Predicate]

Expression ::= [COD SchemaText]
| . . . (standard rules for Expression) . . .

A.3. DC formulae

In the DC part of a CSP-OZ-DC part only counterexample formulae are
allowed:

DC ::= ce formula NL . . .NL cd formula

ce formula ::= ¬ (phase a (phase | events)
a · · · a (phase | events) a true)

phase ::= (true | dPredicatee)[∧ ` ∼ t]
[∧ �NAME . . . ∧ �NAME]

∼ ::= ≤ | < | > | ≥
events := lNAME | 6 lNAME

| events ∨ events | events ∧ events

182

183

Bibliography

[Abr96] J.R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in
dense real-time. Information and Computation, 104(1):2–34,
1993.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[AH89] R. Alur and T.A. Henzinger. A really temporal logic. In IEEE
Symposium on Foundations of Computer Science, pages 164–
169, 1989.

[AL92] M. Abadi and L. Lamport. An old-fashioned recipe for real
time. In J.W. de Bakker, C. Huizing, W.-P. de Roever, and
G. Rozenberg, editors, Real-Time: Theory in Practice, vol-
ume 600 of Lecture Notes in Computer Science, pages 1–27.
Springer-Verlag, 1992.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, 2004.

[BCCZ03] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Bounded model
checking. In Advances in Computers, volume 58. Academic
Press, 2003.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic model checking: 1020 states and beyond. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 1–33, Washington, D.C., 1990. IEEE
Computer Society Press.

184 Bibliography

[BDL04] G. Behrmann, A. David, and K.G. Larsen. A tutorial on up-
paal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th Interna-
tional School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, num-
ber 3185 in Lecture Notes in Computer Science, pages 200–236.
Springer-Verlag, September 2004.

[BGK+96] J. Bengtsson, D. Griffioen, K. Kristoffersen, K. Larsen, F. Lars-
son, P. Pettersson, and W. Yi. Verification of an audio protocol
with bus collision using uppaal. In R. Alur and T. Henzinger,
editors, Computer Aided Verification CAV’96, volume 1102 of
Lecture Notes in Computer Science, pages 244–256. Springer-
Verlag, July 1996.

[BLR95] A. Bouajjani, Y. Lakhnech, and R. Robbana. From Duration
Calculus to linear hybrid automata. In P. Wolper, editor, Com-
puter Aided Verification CAV’95, volume 939 of Lecture Notes
in Computer Science, pages 196–210, Liege, Belgium, 1995.
Springer Verlag.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an
audio control protocol. In H. Langmaack, W.-P. de Roever,
and J. Vytopil, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863, pages 170–192, Lübeck,
Germany, 1994. Springer-Verlag.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691,
1986.

[Büc60] J.R. Büchi. On a decision method in restricted second order
arithmetic. In E. Nagel et al., editor, Proc. Internat. Congr. on
Logic, Methodology and Philosophy of Science. Stanford Univ.
Press, 1960.

[CBRZ01] E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System
Design, 19, 2001.

[CCO+04] S. Chaki, E.M. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/event-based software model checking. In E.A.

Bibliography 185

Boiten, J. Derrick, and G. Smith, editors, Proceedings of the 4th
International Conference on Integrated Formal Methods (IFM
’04), volume 2999 of Lecture Notes in Computer Science, pages
128–147. Springer-Verlag, April 2004.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In
Logic of Programs, Workshop, number 131 in Lecture Notes in
Computer Science, pages 52–71, London, UK, 1981. Springer-
Verlag.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri-
fication of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.
The MIT Press, 1999.

[Col75] G. E. Collins. Quantifier elimination for the elementary the-
ory of real closed fields by cylindrical algebraic decomposition.
In 2nd GI Conference on Automata Theory and Formal Lan-
guages, Lecture Notes in Computer Science, pages 134–183.
Springer-Verlag, 1975.

[Dav93] J. Davies. Specification and Proof in Real-Time CSP. Cam-
bridge Univ. Press, 1993.

[Die99] H. Dierks. Synthesizing controllers from real-time specifica-
tions. IEEE Trans. Computer-Aided Design of Integrated Cir-
cuits and Systems, 18:33–43, 1999.

[Die01] H. Dierks. PLC-automata: A new class of implementable real-
time automata. Theoretical Computer Science, 253(1):61–93,
2001.

[DKRS91] R. Duke, P. King, G. Rose, and G. Smith. The object-z spec-
ification language. In In Technology of Object-Oriented Lan-
guages and Systems (TOOLS 5). Prentice-Hall, 1991.

[DL02] H. Dierks and M. Lettrari. Constructing test automata from
graphical real-time requirements. In FTRTFT ’02: Formal

186 Bibliography

Techniques in Real-Time and Fault-Tolerant Systems, number
2469 in Lecture Notes in Computer Science, pages 433–454.
Springer-Verlag, 2002.

[DS95] J. Davies and S. Schneider. A brief history of Timed CSP.
Theoretical Computer Science, 138:243–271, 1995.

[Fis00] C. Fischer. Combination and Implementation of Processes and
Data: From CSP-OZ to Java. PhD thesis, Bericht Nr. 2/2000,
University of Oldenburg, April 2000.

[For05] Formal Systems (Europe) Ltd. Failures-Divergence Refinement:
FDR2 User Manual, June 2005.

[Frä98] M. Fränzle. Model-checking dense-time duration calculus. In
M.R. Hansen, editor, Duration Calculus: A Logical Approach
to Real-Time Systems, Workshop proceedings of the 10th Eu-
ropean Summer School in Logic, Language and Information,
pages 31–40. DFKI Saarbrücken, Germany, August 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[Gri98] A. Griffiths. A Formal Semantics to Support Modular Reason-
ing in Object-Z. PhD thesis, University of Queensland, 1998.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems.
Science Of Computer Programming, 8(3):231–274, 1987.

[Hei99] S. Heilmann. Proof Support for Duration Calculus. PhD thesis,
Dept. Inform. Technology, Tech. Univ. Denmark, June 1999.
Tech. Report IT-TR: 1999-030.

[Hel98] J. Hellbig. Linking Visual Formalisms: A Compositional Proof
System for Statcharts Based on Symbolic Timing Diagrams.
PhD thesis, University of Oldenburg, 1998.

[HM05] J. Hoenicke and P. Maier. Model-checking of specifications inte-
grating processes, data and time. In J.S. Fitzgerald, I.J. Hayes,
and A. Tarlecki, editors, FM 2005, volume 3582 of LNCS, pages
465–480. Springer, 2005.

Bibliography 187

[HO02a] J. Hoenicke and E.-R. Olderog. Combining specification tech-
niques for processes data and time. In M. Butler, L. Petre, and
K. Sere, editors, Integrated Formal Methods, volume 2335 of
Lecture Notes in Computer Science, pages 245–266. Springer-
Verlag, May 2002.

[HO02b] J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A combination
of specification techniques for processes, data and time. Nordic
Journal of Computing, 9(4):301–334, 2002.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Commu-
nications of the ACM, 21:666–677, 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[HZ97] M.R. Hansen and C. Zhou. Duration calculus: Logical founda-
tions. Formal Aspects of Computing, 9:283–330, 1997.

[ISO02] ISO. Information technology – Z formal specification notation –
Syntax, type system and semantics. Number 13568. ISO/IEC,
2002.

[ISO05] ISO. Information technology – Open Distributed Processing –
Unified Modelling Language (UML). Number 19501. ISO/IEC,
2005.

[Joh96] W. Johnston. A type checker for object-z. Technical Report
96-24, University of Queensland, 1996.

[Kle00] C. Kleuker. Constraint Diagrams. PhD thesis, University of
Oldenburg, 2000.

[KLSV06] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The The-
ory of Timed I/O Automata. Synthesis Lectures in Computer
Science. Morgan & Claypool Publishers, 2006.

[Kol97] Kolyang. HOL-Z – An Integrated Formal Support Environment
for Z in Isabelle/HOL. PhD thesis, Univ. Bremen, 1997. Shaker
Verlag, Aachen, 1999.

188 Bibliography

[Lam83] L. Lamport. What good is temporal logic? In R.E.A. Mason,
editor, Proceedings of the IFIP 9th World Congress, number 83
in Information Processing, pages 657–668. IFIP, 1983.

[Lam94] L. Lamport. The temporal logic of actions. ACM TOPLAS,
16:872–973, 1994.

[LN99] J. Lind-Nielsen. BuDDy – a binary decision diagram pack-
age. Technical report, Department of Information Technology,
Technical University of Denmark, 1999.

[LPY95] K.G. Larsen, P. Pettersson, and W. Yi. Diagnostic model-
checking for real-time systems. In Proc. of Workshop on Ver-
ification and Control of Hybrid Systems III, number 1066 in
Lecture Notes in Computer Science, pages 575–586. Springer-
Verlag, October 1995.

[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid
I/O automata. In R. Alur, T.A. Henzinger, and E.D. Sontag,
editors, Hybrid Systems III, volume 1066 of Lecture Notes in
Computer Science, pages 496–510. Springer-Verlag, 1996.

[LV93] N. Lynch and F. Vaandrager. Forward and backward sim-
ulations – part II: timing-based systems. Technical Report
MIT/LCS/TM-487, Massachusetts Institute of Technology,
1993.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic
Publisher, 1993.

[MD98] B.P. Mahony and J.S. Dong. Blending Object-Z and Timed
CSP: an introduction to TCOZ. In K. Futatsugi, R. Kem-
merer, and K. Torii, editors, The 20th International Confer-
ence on Software Engineering (ICSE’98), pages 95–104. IEEE
Computer Society Press, 1998.

[MD99a] B.P. Mahony and J.S. Dong. Overview of the semantics of
TCOZ. In A. Galloway K. Araki and K. Taguchi, editors,
Integrated Formal Methods (IFM’99), pages 66–85. Springer-
Verlag, 1999.

Bibliography 189

[MD99b] B.P. Mahony and J.S. Dong. Sensors and actuators in TCOZ.
In J.M. Wing, J. Woodcock, and J. Davies, editors, FM’99 –
Formal Methods, volume 1709 of Lecture Notes in Computer
Science, pages 1166–1185. Springer-Verlag, 1999.

[Mey05] R. Meyer. Model-Checking von Phasen-Event Automaten
bezüglich Duration Calculus Formeln mittels Testautomaten.
Master’s thesis, Universität Oldenburg, 2005.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[Pan01] P.K. Pandya. Specifying and deciding quantified discrete-time
duration calculus formulae using DCVALID. In Real-Time
Tools (RTTOOLS 2001), Aalborg, 2001.

[Plo81] G.D. Plotkin. A Structural Approach to Operational Seman-
tics. Technical Report DAIMI FN-19, University of Aarhus,
1981.

[Rav94] A.P. Ravn. Design of embedded real-time computing sys-
tems. Dr. tech. dissertation, Technical University of Denmark,
September 1994.

[Ros94] A.W. Roscoe. Model-checking CSP. In A.W. Roscoe, editor,
A Classical Mind — Essays in Honour of C.A.R.Hoare, pages
353–378. Prentice-Hall, 1994.

[Ros97] A.W. Roscoe. The Theory and Practice of Concurrency.
Prentice-Hall, 1997.

[Ryb02] A. Rybalchenko. A model checker based on abstraction refine-
ment. Master’s thesis, Universität des Saarlandes, 2002.

[Saa97] M. Saaltink. The Z/EVES system. In J. Bowen, M. Hinchey,
and D. Till, editors, ZUM’97, volume 1212 of Lecture Notes in
Computer Science, pages 72–88. Springer-Verlag, 1997.

[Sca94] B. Scattergood. The Semantics and Implementation of
Machine-Readable CSP. PhD thesis, University of Oxford,
1994.

190 Bibliography

[Sch00] F.B. Schneider. Enforceable security policies. ACM Transac-
tions on Information and System Security, 3(1):30–50, 2000.

[SH99] G. Smith and I. Hayes. Towards real-time Object-Z. In
K. Araki, A. Galloway, and K. Taguchi, editors, Integrated For-
mal Methods, pages 49–65. Springer-Verlag, 1999.

[Ska94] J.U. Skakkebæk. A Verification Assistent for a Real-Time
Logic. PhD thesis, Dept. Comp. Sci., Tech. Univ. Denmark,
Nov. 1994. Tech. Report ID-TR: 1994-150.

[SKS02] G. Smith, F. Kammüller, and T. Santen. Encoding Object-
Z in Isabelle/HOL. In D. Bert, J.P. Bowen, M.C. Henson,
and K. Robinson, editors, ZB 2002: Formal Specification and
Development in Z and B, volume 2272 of LNCS, pages 82–99.
Springer, 2002.

[Smi92] G. Smith. An Object-Oriented Approach to Formal Specifica-
tion. PhD thesis, University of Queensland, 1992.

[Smi00] G. Smith. The Object-Z Specification Language. Kluwer Aca-
demic Publisher, 2000.

[Smi02] G. Smith. An integration of Real-Time Object-Z and CSP for
specifying concurrent real-time systems. In M. Butler, L. Petre,
and K. Sere, editors, Integrated Formal Methods, volume 2335
of Lecture Notes in Computer Science, pages 245–266. Springer-
Verlag, May 2002.

[SO99] M. Schenke and E.-R. Olderog. Transformational design of real-
time systems – Part 1: from requirements to program specifi-
cations. Acta Inform., 36:1–65, 1999.

[Som98] F. Somenzi. Cudd: Cu decision diagram package, 1998.

[Spi88] J.M. Spivey. Understanding Z: a specification language and its
formal semantics. Cambridge tracts in theoretical computer
science. Cambridge University Press, 1988.

[SS63] J.C. Shepherdson and H.E. Sturgis. Computability of recursive
functions. Journal of the ACM, 10(2):217–255, 1963.

Bibliography 191

[ST98] K. Strehl and L. Thiele. Symbolic model checking of process
networks using interval diagram techniques. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD-98), pages 686–692, San Jose, California, 8–12,
1998.

[Süh99] C. Sühl. RT-Z: An integration of Z and Timed CSP. In A. Gal-
loway K. Araki and K. Taguchi, editors, Integrated Formal
Methods (IFM’99), pages 66–85. Springer-Verlag, 1999.

[Süh02] C. Sühl. An Integration of Z and Timed CSP for Specifying
Real-Time Embedded Systems. PhD thesis, Technische Univer-
sität Berlin, 2002.

[Tap01] J. Tapken. Model-Checking of Duration Calculus Specifications.
PhD thesis, University of Oldenburg, June 2001.

[Vah04] A. Vahidi. JBDD, a Java interface to CUDD and BuDDY,
2004. http://javaddlib.sourceforge.net/jbdd.

[Var96] M. Vardi. An automata-theoretic approach to linear tempo-
ral logic. In Logics for Concurrency, pages 238–266. Springer-
Verlag, 1996.

[Yov97] S. Yovine. Kronos: A verification tool for real-time systems. In-
ternational Journal on Software Tools for Technology Transfer,
1:123–133, 1997.

[YPD94] W. Yi, P. Pettersson, and M. Daniels. Automatic verifica-
tion of real-time communicating systems by constraint-solving.
In Dieter Hogrefe and Stefan Leue, editors, Proc. of the 7th
Int. Conf. on Formal Description Techniques, pages 223–238.
North–Holland, 1994.

[ZH96] C. Zhou and M.R. Hansen. Chopping a point. In Proc. BCS
FACS 7th Refinement Workshop: Theory and Practice of Sys-
tem Design, Electronic Workshops in Computing. Springer-
Verlag, 1996.

[ZH04] C. Zhou and M.R. Hansen. Duration Calculus: A Formal Ap-
proach to Real-Time Systems. Springer-Verlag, 2004.

http://javaddlib.sourceforge.net/jbdd

192 Bibliography

[ZHS93] C. Zhou, M.R. Hansen, and P. Sestoft. Decidability and un-
decidability results for Duration Calculus. In P. Enjalbert,
A. Finkel, and K.W. Wagner, editors, Symposium on Theo-
retical Aspects of Computer Science (STACS’93), LNCS 665,
pages 58–68. Springer, 1993.

193

Index

Σ, 12
2, 6, 33, 45
u, 6, 33, 45
a, 17
`, 19
l, 21
6 l, 21
�, 21
∫ , 17
d·e, 19
3, 19
2, 19
&, 36
4, 36
/., 57
o
o, 12
‖, 6, 35, 46
|||, 35
[R], 35
C, 7
−C, 7
B, 7
−B, 7
o
9, 6, 36
[[·]]D, 13
[[·]]E , 13
[[·]]P , 13
[[·]]T , 13
`D, 12
`E , 12

`P , 12

A, 11
accepting, 79
accepting automaton, 136
allowEmpty , 104
alphparallel , 41
ARMC, 166

B, 13
binding, 8
bound , 104
bounded model checking, 165

canseep, 110
channel, 5, 30
channel variable, 57
ChannelDecl , 30, 49, 179
Chaos, 32
clock constraints, 71

convex, 71
COD-Class, 48
COD-SchemaText, 56
complete, 108
convex, 71
counterexample formula, 23, 103
CSP

semantics, 6
syntax, 6

DeclPart , 8
deterministic automaton, 84

194 Index

disjunction, 82
Diver , 32
Duration Calculus

counterexample formula, 23,
51

CSP-OZ-DC, 51
decidability, 24
implementables, 22
semantics, 18
syntax, 17

enter , 115
entryEvents, 104
event, 5, 31
Expression, 30, 181
extchoice, 41

forbidden, 104
free type, 10
function symbols, 17

generic type, 11
genparallel , 41
GENTYPE, 12
GIVEN, 11
given type, 9
global variables, 17
gteq , 106
guard , 116

implementing, 81
in, 106
Init , 50, 181
init , 119
intchoice, 41
Interface, 30, 49, 179
inv , 104

keep, 115
Kronos, 93

LB , 105
len, 159
less, 107
linkedparallel , 41

matching, 78
Model, 13
multi-prefixing, 33

NAME, 12
NL, 30

Object-Z, 14
semantics, 15

observables, 17
Operation, 50, 181

P, 7
pA, 161
Paragraph, 9, 30, 180
parallel

automata, 74
parameter variable, 57
Phase Event Automaton

accepting, 79
accepting automaton, 136
definition, 72
deterministic, 84
disjunction, 82
implementing, 81
parallel, 74
power set, 119

PhaseSpec, 104
PolarCoord , 8, 14
power set automaton, 119
PowerSet , 107
Prefix , 105
prefix , 41
prefixing, 33, 45

Index 195

Process, 179
ProcessDeclaration, 32, 49
ProcessEquation, 49

relation symbols, 17
run, 75

matching, 78
stuttering extension, 77

schema, 8
schema type, 11
SchemaText , 8
seep, 115
semantics

CSP, 6
CSP-OZ-DC, 56, 59
CSPz, 44–48
DC, 18
Object-Z, 15, 58
prefixing, 45
Z, 12

sequence, 41
signal, 31
Signature, 11
Skip, 6, 32
State, 50, 181
Stop, 6, 32
strict, 71
stuttering

extension, 77
invariant, 73

syntax
channel declaration, 30, 49
CSP, 6
CSP-OZ-DC, 48
CSPz, 30–37
DC, 17
init schema, 50
prefixing, 33

process declaration, 32, 49
state schema, 50
Z, 9

TCS, 160
Time, 18
TimeOp, 104
Trace, 105
transition constraint system, 160
type

free type, 10
generic type, 11
given type, 9
schema type, 11
type checking, 11, 37–41
Z types, 11

U, 12
UB , 105
unroll , 165
Untime, 58
Uppaal, 92, 151–159

W, 12
WE , 41
WP , 41

wait , 106

xlat , 26

Z
semantics, 12
syntax, 9
type checking, 11
type system, 11

196

197

Curriculum Vitae

August 21, 1975 born in Nordenham, Germany
1981 – 1994 school in Rodenkirchen and Nordenham
1994 – 1999 study of computer science at the Carl von Ossietzky

University of Oldenburg, title of the Master’s the-
sis: “Graphische Spezifikationssprachen: Der Zu-
sammenhang zwischen Constraint Diagrams und
Real-Time Symbolic Timing Diagrams” (“Graph-
ical Specification Techniques: The connection be-
tween Constraint Diagrams and Real-Time Sym-
bolic Timing Diagrams”)

1999 – 2006 in the working group “Correct System Design” of
Prof. Dr. Ernst-Rüdiger Olderog at the University
of Oldenburg

July 12, 2006 defense of the dissertation

198

199

Technical Reports

Fakultät II, Department für Informatik, Universität Oldenburg,
Postfach 2503, 26111 Oldenburg, Germany

1/87 A. Viereck:
”
Klassifikationen, Konzepte und Modelle für den Mensch-Rechner-

Dialog“ (Dissertation)

2/87 A. Schwill:
”
Forbidden subgraphs and reduction systems: A comparison“

3/87 J. Kämper:
”
Non-uniform proof systems: A new framework to describe non-

uniform and probabilistic complexity classes“

1/88 K. Ambos-Spies, H. Fleischhack, H. Huwig:
”
Diagonalizing over deterministic

polynomial time“

2/88 A. Schwill:
”
Shortest edge-disjoint paths in geodetically connected graphs“

3/88 V. Claus, U. Lichtblau (Hrsg.):
”
1. Tagung zur Küsten-Informatik“

1/89 U. van der Valk:
”
Einige Entscheidbarkeits- und Unentscheidbarkeitsresultate

für Klasse von S/T-Netzen unter Maximum Firing Strategie und unter Prio-
ritätenstrategien“

2/89 J. Kämper:
”
Strukturelle Untersuchungen im Umfeld der Komplexitätsklassen P

und NP unter besonderer Berücksichtigung nichtuniformer, probabilistischer und
disjunktiv selbstreduzierender Algorithmen“ (Dissertation)

3/89 J. Kämper:
”
Nondeterministic oracle Turing machines with maximal computation

paths“

1/90 A. Schwill:
”
Shortest edge-disjoint paths in graphs“ (Dissertation)

2/90 K.R. Apt, E.-R. Olderog:
”
Using transformations to verify parallel programs“

3/90 U. Lichtblau:
”
Flußgraphgrammatiken“ (Dissertation)

4/90 K.R. Apt, E.-R. Olderog:
”
Introduction to program verification“

5/90 H. Jasper:
”
Datenbankunterstützung für Prolog-Programmierumgebungen“ (Dis-

sertation)

1/91 F. Korf:
”
Net-based efficient simulation of AADL specifications“

2/91 S.V. Krishnan, C. Pandu Rangan, A. Schwill, S. Seshadri:
”
Two disjoint paths in

chordal graphs“

3/91 H. Eirund:
”
Modellierung und Manipulation multimedialer Dokumente“ (Disser-

tation)

4/91 G. Schreiber:
”
Ein funktionaler Äquivalenzbegriff für den hierarchischen Entwurf

von Netzen“

200 Technical Reports

1/92 A. Viereck (Hrsg.):
”
Ergebnisse der 11. Arbeitstagung, Mensch-Maschine Kom-

munikation“

2/92 P. Gorny, U. Daldrup, H. Schwab:
”
Zwischenbilanz: Menschengerechte Gestaltung

von Software“

3/92 E.-R. Olderog, St. Rössig, J. Sander, M. Schenke:
”
ProCoS at Oldenburg: The In-

terface between Specification Language and occam-like Programming Language“

4/92 F. Korf:
”
Synthesis of VHDL Test Environments form Temporal Logic Specifica-

tions“

5/92 W. Kowalk:
”
Konstruktorentechnik: Neue Methoden zur Mengenrechnung, Lo-

gikrechnung und Intervallrechnung“

1/93 Ch. Dietz, G. Schreiber:
”
Eine Termdarstellung für S/T-Netze“

2/93 J. Sauer:
”
Wissensbasiertes Lösen von Ablaufplanungsproblemen durch explizite

Heuristiken“

3/93 M. Sonnenschein, U. Lichtblau (Hrsg.):
”
6. Kolloquium der Arbeitsgruppe Infor-

matik-Systeme“

4/93 H. Fleischhack, U. Lichtblau, M. Sonnenschein, R. Wieting:
”
Generische Defini-

tion hierarchischer zeitbeschrifteter höherer Petrinetze“

5/93 F. Köster, L. Twele, R. Wieting, W. Ziegler:
”
Fallbeispiele zur Modellierung mit

THORNetzen“

1/94 R. Götze:
”
Dialogmodellierung für multimediale Benutzerschnittstellen“

2/94 B. Müller:
”
PPO – Eine objektorientierte Prolog-Erweiterung zur Entwicklung

wissensbasierter Anwendungssysteme“

3/94 W. Damm, A. Mikschl:
”
Projekt Entwurf und Implementierung eines Multi-

threaded RISC-Prozessors“

4/94 S. Rössig:
”
A Transformational Approach to the Design of Communicating Sys-

tems“ (Dissertation)

5/94 G. Schreiber:
”
Funktionale Äquivalenz von Petri-Netzen“ (Dissertation)

1/95 A. Gronewold, H. Fleischhack:
”
Language Preserving Reductions of Safe Petri-

Nets“

2/95 H. Reineke:
”
Struktur und Verhalten von verteilten endlichen Automaten“ (Dis-

sertation)

3/95 H. Behrends:
”
Beschreibung ereignisgesteuerter Aktivitäten in datenbankgestütz-

ten Informationssystemen“ (Dissertation)

4/95 U. M. Levens:
”
Computerunterstütztes Modellieren von Musikstücken mit Petri-

Netzen: Das Mailänder Konzept“

1/96 M. Burke:
”
FDDI und ATM in multimedialen Anwendungsumgebungen“ (Dis-

sertation)

2/96 I. Pitschke:
”
Interaktive Rekonstruktion geometrischer Modelle aus digitalen Bil-

dern“ (Dissertation)

1/97 L. Bölke:
”
Ein akustischer Interaktionsraum für blinde Rechnerbenutzer“ (Dis-

sertation)

Technical Reports 201

2/97 S. Schöf:
”
Verteilte Simulation höherer Petrinetze“ (Dissertation)

1/98 S. Kleuker:
”
Inkrementelle Entwicklung von verifizierten Spezifikationen für ver-

teilte Systeme“ (Dissertation)

2/98 J. Bohn:
”
Mechanical Support and Validation of a Design Calculus for Commu-

nicating Systems by a Logic-Based Proof System“ (Dissertation)

3/98 L. Köhler:
”
Fuzzy Geometrie und Anwendungen in der medizinischen Bildverar-

beitung“ (Dissertation)

4/98 J. Helbig:
”
Linking Visual Formalisms: A Compositional Proof System for Stat-

echarts Based on Symbolic Timing Diagrams“ (Dissertation)

5/98 G. Stiege:
”
Edge Partitions in Undirected Graphs“

6/98 A. Gerns:
”
Entwicklung und Bewertung von Objektmigrationsstrategien für ver-

teilte Umgebungen“

7/98 M. Stadler:
”
Abstrakte Rechnernetzmodelle als Grundlage einer umfassenden Au-

tomatisierung des Netzmanagements – Konzepte und Sprachen zu ihrer Umset-
zung“ (Dissertation)

8/98 M.-S. Steiner:
”
Lastverteilung in heterogenen Systemen“

9/98 Clemens Otte:
”
Fuzzy-Prototyp-Klassifikatoren und deren Anwendung zur auto-

matischen Merkmalsselektion“

1/99 Juliane Vorndamme:
”
Die Auswirkungen rechtlicher Verpflichtungen auf die Soft-

ware-entwicklung“

2/99 E. Best/K.M. Richter:
”
Relational Semantics Revisited“

3/99 J. S. Lie:
”
Einsatz von Objektmigrationssystemen zur Leistungssteigerung in ver-

teilten Systemen“

4/99 Zweijahresbericht des Fachbereichs Informatik

5/99 Ingo Stierand, Olaf Maibaum, Björn Briel, Günther Stiege:
”
Cassandra – Ge-

nerierung, Analyse und Simulation von eingebetteten Multiprozessor-Echtzeit-
systemen“

6/99 Gunnar Wittich:
”
Ein problemorientierter Ansatz zum Nachweis von Realzeitei-

genschaften eingebetteter Systeme“

7/99 Annegret Habel, Jürgen Müller, Detlef Plump:
”
Double-Pushout Graph Trans-

formation Revisited“

8/99 Ingo Stierand:
”
Eine Konfigurationssprache zur Erstellung von Ambrosia/MP-

Systemen“

9/99 Igor V. Tarasyuk:
”
Equivalences for Concurrent and Distributed Systems“

10/99 Eike Best, Alexander Lavrov:
”
Generalised Composition Operations for High-

Level Petri-Nets“

11/99 Alexander Lavrov:
”
Enhancing Mixed Nonlinear Optimization: A Hybrid Ap-

proach“

12/99 Alexander Lavrov:
”
Hybrid Techniques in Discrete-Event System Modelling and

Control: some Examples“

202 Technical Reports

13/99 Eike Best, Raymond Devillers, Maciej Koutny:
”
Recursion and Petri Nets“

14/99 Eike Best, Raymond Devillers, Maciej Koutny:
”
The Box Algebra = Petri Nets

+ Process Expressions“

15/99 Eike Best, Harro Wimmel:
”
Reducing k -safe Petri Nets to Pomset-equivalent 1-

safe Petri Nets“

16/99 Udo Brockmeyer:
”
Verifikation von STATEMATE Designs“ (Dissertation)

1/00 Henning Dierks:
”
Specification and Verification of Polling Real-Time Systems“

(Dissertation)

2/00 Clemens Fischer:
”
Combination and Implementation of Processes and Data: from

CSP-OZ to Java“ (Dissertation)

3/00 Cheryl Kleuker:
”
Constraint Diagrams“ (Dissertation)

4/00 Thomas Thielke:
”
Linear-algebraische Methoden zur Beschreibung, Verfeinerung

und Analyse gefärbter Petrinetze“ (Dissertation)

1/01 Günther Stiege:
”
Higher Decomposition in Undirected Graphs“ (Bericht)

2/01 Ute Vogel: Zweijahresbericht

3/01 Josef Tapken:
”
Model-Checking of Duration Calculus Specifications“ (Disserta-

tion)

4/01 Björn Briel:
”
Analyse eingebetteter Systeme mittels verteilter Simulation“ (Dis-

sertation)

5/01 Günther Stiege:
”
Standard Decomposition and Periodicity of Digraphs“ (Bericht)

6/01 Ingo Stierand:
”
Ambrosia/MP – Ein Echtzeitbetriebssystem für eingebettete

Mehrprozessorsysteme“ (Dissertation)

1/02 Giorgio Busatto, Annegret Habel:
”
Improving the Quality of Hypertexts Using

Graph Transformation“ (Bericht)

2/02 Giorgio Busatto:
”
Modeling Hyperweb Dynamics through Hierarchical Graph

Transformation“ (Bericht)

3/02 Giorgio Busatto:
”
An Abstract Model of Hierarchical Graphs and Hierarchical

Graph Transformation“ (Dissertation)

4/02 Laila Kabous:
”
An Object Oriented Design methodology for hard real Time Sys-

tems: The OOHARTS approach“ (Dissertation)

1/03 Ute Vogel:
”
Zweijahresbericht“

2/03 Olaf Maibaum:
”
Bestimmung symbolischer Laufzeiten in eingebetteten Echtzeit-

systemen“ (Dissertation)

3/03 Günther Stiege, Ingo Stierand:
”
Connectedness-Based Hierarchical Decomposi-

tion of Undirected Graphs“ (Bericht)

4/03 Willi Hasselbring, Susanne Petersen:
”
Standards für die medizinische Kommuni-

kation und Dokumentation“ (Bericht)

5/03 Andreas Möller:
”
Eine virtuelle Maschine für Graphprogramme“ (Bericht)

6/03 Tom Bienmüller:
”
Reducing Complexity for the Verification of Statemate De-

signs“ (Bericht)

Technical Reports 203

7/03 Sandra Steinert:
”
Graph Programs for Graph Algorithms“ (Bericht)

8/03 Jochen Klose:
”
Live Sequence Charts: A Graphical Formalism for the Specifica-

tion of Communication Behavior“ (Dissertation)

1/04 Jens Oehlerking:
”
Transformation of Edmonds’ Maximum Matching Algorithm

into a Graph Program“ (Bericht)

2/04 Sergej Alekseev:
”
Dienste Intelligenter Netze Graphentheoretische Methoden in

der Kontrollflussanalyse“ (Bericht)

3/04 Giorgio Busatto:
”
GraJ: A System for Executing Graph Programs in Java“ (Be-

richt)

1/05 Sergej Alekseev:
”
Ablaufanalyse objektorientierter Echtzeitanwendungen mit gra-

phentheoretischen Methoden“ (Dissertation)

2/05 Ute Vogel:
”
Zweijahresbericht“

3/05 Igor Tarasyuk:
”
Discrete time stochastic Petri box calculus“ (Bericht)

1/06 Henning Dierks:
”
Time, Abstraction and Heuristics“ (Habilitation)

2/06 Li Sek Su:
”
Full-Output Siphons and Deadlock-Freeness for Free Choice Petri

Nets“ (Bericht)

3/06 Timo Warns:
”
Solving Consensus Using Structural Failure Models“ (Bericht)

4/06 Sergej Alekseev:
”
Graphentheoretische Methoden in der Ablaufanalyse objektori-

entierter Anwendungen“ (Dissertation)

5/06 Li Sek Su:
”
Some Considerations on the Foundation of NP-Completeness Theory“

(Bericht)

6/06 Li Sek Su:
”
Semitraps and Deadlock-Freeness for Reduced Asymmetric Choice

Nets“ (Bericht)

7/06 Li Sek Su:
”
Algorithms of computing the Deadlock Markings Sets for Petri Nets“

(Bericht)

8/06 Annegret Habel, Karl-Heinz Pennemann, Arend Rensink:
”
Weakest Preconditions

for High-Level Programs (Long Version)“ (Bericht)

9/06 Jochen Hoenicke:
”
Combination of Processes, Data, and Time“ (Dissertation)

	Introduction
	CSP, Object-Z and Duration Calculus
	CSP
	Syntax
	Operational Semantics

	Z
	Syntax
	Type Checking
	Semantics
	Boolean Type
	Object-Z
	Reference and Value Semantics

	Duration Calculus
	Syntax of Duration Calculus
	Semantics of Duration Calculus
	Abbreviations
	Embedding Z into Duration Calculus
	Embedding Events Into State Variables
	Counterexample Traces
	Satisfiability of DC is Semi-Decidable

	CSP-OZ-DC
	CSPz
	Syntax
	Semantics

	CSP-OZ-DC Classes
	Syntax
	Case Study
	Semantics

	Parallel Composition of Systems
	Discussion and Related Work
	CSPz
	Semantics of CSP-OZ-DC
	Parallel Composition
	Related Work

	Phase Event Automata
	Prerequisites
	Syntax of Phase Event Automata
	Operational Semantics
	Automata and Formulae
	Deterministic Automata
	Case Study: Audio Control Protocol
	Discussion and Related Work
	Discussion
	Other Timed Automata Models

	From CSP-OZ-DC to Phase-Event-Automata
	Translating CSP
	Translating Object-Z
	Translating DC
	Power Set Construction for Counterexamples
	Creating the Accepting Automaton
	Case Study: Elevator

	Discussion and Related Work

	Model Checking
	Implementation of Phase Event Automata
	Representation of Formulae
	Computing the Power Set Automaton

	Reachability and Phase Event Automata
	Translation to Uppaal Automata
	Case Study: Audio Protocol

	A Constraint-based Semantics for PEA
	Transition Constraint Systems
	Translation of PEA to TCS
	Bounded Model Checking
	ARMC
	Case Study: Elevator

	Related Work
	Audio Protocol
	Model Checking Duration Calculus

	Conclusion
	Summary
	Future Work

	Syntax of CSP-OZ-DC
	New constructs in CSPz
	New constructs in CSP-OZ-DC
	DC formulae

	Bibliography
	Index
	Curriculum Vitae
	Technical Reports

